
Hochschule Darmstadt
Fachbereich Informatik

A Dynamic Product Line for an Electronic
Health Record Management System in

Cancer Care

Abschlussarbeit zur Erlangung des akademischen Grades
Master of Science (M. Sc.)

vorgelegt von
Patrick Spitzer (744230)

Referent: Prof. Dr. Bernhard Humm
Korreferent: Prof. Dr. Ralf Hahn

Ausgabedatum: 13.10.2016
Abgabedatum: 13.04.2017

A Dynamic Product Line for an EHRMS Patrick Spitzer

Erklärung

Ich versichere hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die im Literaturverzeichnis angegebenen Quellen benutzt habe. Alle
Stellen, die wörtlich oder sinngemäß aus veröffentlichten oder noch nicht veröf-
fentlichten Quellen entnommen sind, sind als solche kenntlich gemacht. Die Zeich-
nungen oder Abbildungen in dieser Arbeit sind von mir selbst erstellt worden oder
mit einem entsprechenden Quellennachweis versehen. Diese Arbeit ist in gleicher
oder ähnlicher Form noch bei keiner anderen Prüfungsbehörde eingereicht worden.

Darmstadt, 13. April 2017
Patrick Spitzer

I

A Dynamic Product Line for an EHRMS Patrick Spitzer

Abstract

Die Integration von Informationstechnik in die wachsende Komplexität der Biowis-
senschaft und des Gesundheitswesens ist ein wichtiger Faktor um Ärzte zu unter-
stützen, Patientensicherheit zu erhöhen und klinische Prozesse zu optimieren. Ein
Verwaltungssystem für elektronische Gesundheitsakten hilft Kliniken, indem es In-
formationen über den Gesundheitsstatus eines Patienten digital abspeichert und
zusätzlich Unterstützungs- und Verwaltungsdienste anbietet.

Diese Systeme müssen äußerst variabel sein, da viele medizinische Fachrichtungen,
Informationsdienste, technische Besonderheiten und krankenhausspezifische Anspas-
sungen zu berücksichtigen sind. Des Weiteren müssen sie an die umfangreiche, viel-
fältige und sich ständig verändernde medizinische Domäne flexibel anpassbar sein.

Um dieses Problem zu lösen, wird eine dynamische Software Produktlinie für ein Ver-
waltungssystem für elektronische Gesundheitsakten in dieser Thesis konzipiert und
teilweise implementiert. Die Produktlinie ermöglicht die Entwicklung und Instan-
ziierung mehrerer kundenspezifischer Produkte auf einer Platform. Dabei werden
Kernfunktionalitäten und Softwareartefakte untereinander geteilt. Jede Anwendung
läuft jedoch innerhalb ihres eigenen Kontexts. Das heißt, dass produktspezifische
Daten, Funktionalitäten und Konfigurationen von anderen Anwendungen weder be-
nutzt noch eingesehen werden können. Konkrete Anwendungen werden durch das
Erstellen einer Konfiguration abgeleitet, welche die aktivierten Funktionalitäten und
produktspezifischen Einstellungen definiert.

Neben der Architektur fokusiert sich diese Thesis auf die initiale Untersuchung der
gemeinsamen und variablen Anforderungen, die Verwaltung der vielfältigen medizi-
nischen Daten mit Hilfe des HL7 Reference Information Model’s, die Vorstellung von
grundlegenden Mechanismen für die Zugriffsverwaltung und das Erstellen einer fle-
xiblen Benutzeroberfläche für das Verwalten von elektronischen Gesundheitsakten.

II

A Dynamic Product Line for an EHRMS Patrick Spitzer

Abstract

Integrating information technology into the growing complexity of life science and
healthcare is an important factor for supporting physicians, improving safety for
patients and optimizing clinical processes. An electronic health record management
system helps hospitals as it digitally stores information about the health status of
a patient and additionally provides support or management services.

However, these systems must be highly flexible as they have to consider various
medical specialties, information services, technical features and hospital specific cus-
tomizations. Furthermore they have to be dynamically adaptable to the extensive,
diverse and ever-changing medical domain.

To solve this problem, a dynamic software product line for an electronic health
record management system is being designed and partially implemented in this the-
sis. The product line allows to develop and instantiate multiple customer-specific
products on one platform and enables them to share core functionality and software
artefacts. Each application runs in its own context, i.e. that the product-specific
data, functionality and configuration of others can neither be seen nor used. Con-
crete applications are derived by creating a configuration that defines the enabled
optional features and product-specific settings.

Besides the architecture, the thesis focuses on initially examining the common and
variable requirements, managing the diverse medical data with the HL7 Reference
Information Model, introducing fundamental access management mechanisms and
creating a flexible user interface for managing electronic health records.

III

A Dynamic Product Line for an EHRMS Patrick Spitzer

Contents

1 Introduction 1

1.1 Project . 1

1.2 Motivation . 2

1.3 Structure . 3

2 Problem Statement 4

3 Background 6

3.1 Software Product Line Engineering 6

3.1.1 Product Lines . 6

3.1.2 Domain Engineering . 8

3.1.3 Application Engineering . 10

3.1.4 Variability . 11

3.1.5 Dynamic Software Product Lines for Cloud Computing 13

3.2 Electronic Health Records . 15

3.3 HL7 Reference Information Model . 16

4 Domain Requirements Engineering 18

4.1 Commonality Analysis . 18

4.1.1 Managing Electronic Health Records of Patients 18

4.1.2 Technical Services . 19

IV

A Dynamic Product Line for an EHRMS Patrick Spitzer

4.1.3 HL7 Reference Information Model as Data Model 21

4.1.4 Client Flexibility . 22

4.1.5 Configuration Hierarchy . 22

4.2 Variability Analysis . 24

4.2.1 Medical Specialties . 25

4.2.2 Medical Information Services 25

4.2.3 Technical Services . 26

5 Domain Design 29

5.1 System Overview . 29

5.2 Architecture . 31

5.3 Generic Data Model . 33

5.4 Code-Generation of the Data Model 36

5.5 Data Historization . 38

5.6 Multi-Tenant Data Architecture . 41

5.7 Access Management . 44

5.7.1 Application Layer . 44

5.7.2 Client Layer . 47

5.8 Multi-Language Support . 49

5.9 Product Line Testing . 51

5.10 Client Variability . 53

5.10.1 Patient Records with User Interface Components 54

5.10.2 Variable Attribute Fields . 58

6 Domain Realization 60

6.1 Generic Data Model . 60

6.1.1 Application Layer and Database Implementation 60

6.1.2 Efficient Getter and Setter Methods for the Server 63

V

A Dynamic Product Line for an EHRMS Patrick Spitzer

6.1.3 Client Implementation . 66

6.2 Designing Patient Records with User Interface Components 68

6.2.1 Patient Record Service . 69

6.2.2 Patient Record View Component 72

6.2.3 Patient Record Navigationbar 74

7 Evaluation 76

7.1 Family Evaluation Framework . 76

7.1.1 Overview . 76

7.1.2 Execution . 77

7.1.3 Summary . 79

7.2 Requirements Evaluation . 80

8 Related Work 83

9 Conclusion and Future Work 85

9.1 Conclusion . 85

9.2 Future Work . 87

9.2.1 Configuration . 87

9.2.2 Security . 88

9.2.3 Client Flexibility . 88

9.2.4 Additional Technical Services 89

9.2.5 Miscellaneous . 89

Appendices 91

A HL7 Reference Information Model 92

B Orthogonal Variability Model 94

VI

A Dynamic Product Line for an EHRMS Patrick Spitzer

C Add Patient User Interface 97

D Act Class Implementation 98

VII

A Dynamic Product Line for an EHRMS Patrick Spitzer

List of Figures

3.1 The two development processes of SPLE 8

3.2 Variability in time and space . 12

3.3 Graphical notation for variability models 13

3.4 Example of orthogonal variability modelling 13

3.5 HL7 Reference Information Model . 17

4.1 Configuration hierarchy . 23

4.2 Main categories of the OVM . 25

4.3 OVM for medical specialties and medical information services 26

4.4 OVM for user repositories and multi-tenancy 27

4.5 OVM for supported languages and deployment endpoint 28

4.6 OVM for additional technical services 28

5.1 SPL system overview . 30

5.2 SPL architecture . 32

5.3 Relationship type principle . 34

5.4 Class model of the SPL . 35

5.5 Entity classes worksheet . 37

5.6 Entity attributes worksheet . 37

5.7 Enumerations worksheet . 37

5.8 History entities . 39

VIII

A Dynamic Product Line for an EHRMS Patrick Spitzer

5.9 Example of a BreastCancerHistory database table 40

5.10 Tables for the Shared Database, Shared Schema principle 42

5.11 Multi-tenancy integration with the Tenant View Filter pattern 43

5.12 Relationship between users, roles and permissions 45

5.13 Authentication and authorization in the SPL 45

5.14 Login page for user authentication on the client 47

5.15 Adapting the user interface according to tenant and user configuration 48

5.16 Multi-language support in the SPL 51

5.17 Example UIC for breast cancer . 54

5.18 User interface components concept overview 55

5.19 Prototype for the UIC navigationbar 56

5.20 Prototype implementation for the VAF 59

6.1 Relational Database Tables for Act and ActRelationship 62

6.2 Three Different Views on the Data 67

6.3 Hl7RelationshipService data mapping 68

6.4 Mapping between a patient object and its tree data model 72

6.5 Adding new UICs to a patient record 75

IX

A Dynamic Product Line for an EHRMS Patrick Spitzer

List of Tables

3.1 Comparing DSPLs to configurable SaaS applications 14

5.1 Resource files example . 50

8.1 Opportunities and challenges of cloud computing to improve health
care services . 84

X

A Dynamic Product Line for an EHRMS Patrick Spitzer

Acronyms

ANSI American National Standards Institute

BLOB Binary Large Objects

CA Core Assets

DAO Data Access Object

DSPL Dynamic Software Product Line

EF Entity Framework

EHR Electronic Health Record

EHRMS Electronic Health Record Management System

FEF Family Evaluation Framework

HL7 Health Level Seven

IIS Internet Information Services

ISO International Organization for Standardization

JSON JavaScript Object Notation

MDT Multidisciplinary Team Meeting

MIS Medical Information Service

MS Medical Specialty

MSSQL Microsoft SQL Server

OVM Orthogonal Variability Model

XI

A Dynamic Product Line for an EHRMS Patrick Spitzer

ORM Object-Relational Mapper

REST Representational State Transfer

RIM Reference Information Model

SaaS Software as a Service

SPL Software Product Line

SPLE Software Product Line Engineering

UIC User Interface Components

VAF Variable Attribute Fields

XII

A Dynamic Product Line for an EHRMS Patrick Spitzer

Chapter 1

Introduction

1.1 Project

This thesis was written within the scope of the project SAGE-CARE (SemAntically
integrating Genomics with Electronic health records for Cancer CARE) which is
funded by the European Commission and has several participants from the edu-
cational and commercial sector. The European Commission states that “the aim
of this project is to bring together subject matter experts from the academic and
non-academic sectors to create a holistic informatics platform for rapidly integrat-
ing genomic sequences, electronic health records (EHRs) and research repositories to
enable personalised medicine strategies for malignant melanoma treatment.” [Cor]

At the University of Applied Sciences Darmstadt, an EHR application for treating
patients with melanoma cancer is currently developed for the SAGE-CARE project
(see [HW15]; [BHW15]; [Bee15]; [Ide16]). Besides simply managing patient data, the
system provides medical information services (MISs). Those services aim to support
clinicians by providing person-specific and relevant information, such as suitable lit-
erature or evidence-based medical recommendations. Additionally, multidisciplinary
team meetings (MDTs) are supported, where a team of consultants from multiple
clinical disciplines come together and discuss the treatment of selected patients.

An important partner and consultant during the development process is NSilico
Lifescience Ltd., who is also a participant in the SAGE-CARE Project. The com-
pany is located in Dublin and describes itself as “the provider of the world’s most
easy-to-use data management and analytics software for the lifesciences and health-

1

A Dynamic Product Line for an EHRMS Patrick Spitzer

care industries. The company’s offerings are based upon a unique and unrivalled
blend of biological, computing, software-development and clinical experience and
expertise which enables us to provide our customers with solutions which signifi-
cantly increase the efficiency and accuracy of their work.” [NSind] Their product
Simplicity-MDT was the basis for the EHR application of the University of Applied
Sciences Darmstadt.

1.2 Motivation

Integrating information technology into the growing complexity of life science and
healthcare is an important factor for improving safety for patients. While a lot
of effort is put in improving diagnosis and treatment methods, the integration of
operational systems is not always seen as a priority. However, studies suggest that
such systems can reduce error rates, increase performance of physicians and improve
the clinical outcome. The main barriers for this situation are seen in financial limits,
lack of standards and cultural barriers. [BG03]

While NSilico Lifescience Ltd. already had an existing EHR application for melanoma
treatment, called Simplicity MDT, the enhancement for new medical specialties re-
sulted in developing new applications because of the different requirements, concern-
ing data and user interfaces. These systems are currently developed and maintained
separately, which will cause a lot of maintenance effort if even more customized
applications for medical conditions are added.

To solve this problem a multi-tenant aware dynamic software product line for an
electronic health record management system (EHRMS) that covers multiple cancer
diseases is being designed and partially implemented in this thesis. The product line
allows to develop and instantiate multiple customer-specific products on one plat-
form and enables them to share core functionality and software artefacts, instead of
developing multiple single separated applications. Concrete applications are derived
by creating a configuration that defines the activated features and product-specific
settings. Each application will run in its own context, i.e. that the data, functionality
and configuration of others can not be seen or used.

The thesis uses the software product line engineering approach for the design of the
system. In doing so, it will focus on initially examining the common and variable
requirements, designing the architecture and selected system functionalities, and im-

2

A Dynamic Product Line for an EHRMS Patrick Spitzer

plementing first concepts. The prototypical implementation is based on the current
SAGE-CARE melanoma application, which served as the main input for the design,
together with Simplicity MDT from NSilico.

1.3 Structure

This thesis contains the hereafter described chapters. The fundamental problem
of this thesis and the initial requirements that shall be met are defined in chapter
2. Relevant fundamentals and background knowledge is described in chapter 3.
Thereupon, common and variable features for the product line are examined in
chapter 4. Chapter 5 deals with the architecture design of the system and outlines
multiple concrete concepts. Prototypical implementations for two selected concepts
are shown in chapter 6. Subsequently, in chapter 7 the acquired designs are evaluated
with the help of the Family Evaluation Framework and additionally by comparing
it against the incipient defined requirements. Related work is shown and shortly
summarized in chapter 8, while chapter 9 finally concludes the results of this thesis
and determines aspects that were not addressed and are considered as future work.

3

A Dynamic Product Line for an EHRMS Patrick Spitzer

Chapter 2

Problem Statement

The purpose of this thesis is to develop a dynamic software product line (DSPL) for
customer-specific electronic health record management systems. These applications
mainly differ according to their supported medical specialties and medical infor-
mation services. Customers should be able to document their preconditions with
the product line owner, who consequently must be able to configure the software
product line (SPL) in such a way that a concrete product gets derived. More de-
tailed requirements, including a commonality and variability analysis for the product
line, are examined in chapter 4. All things considered, the following fundamental
requirements were identified:

1. Product line for EHR management: The described concept shall outline
the architecture of a product line for an EHRMS in cancer care. The product
line is initially not designed for the mass market. Currently two hospitals use
the commercial applications, which serve as main input for the SPL.

2. Dynamic derivation of concrete products: Concrete products shall be
derivable from a software platform via configuration, covering all possible vari-
ants. Meaning that various medical specialties, medical information services
and technical services have to be considered. Furthermore, configuration may
concern every layer of the architecture.

3. Configurability on different levels: Products meet the requirements of
a customer on different levels, e.g. a default configuration for a hospital and
a differing specific configuration for a single physician. Consequently, where
appropriate, different configuration levels must be considered.

4

A Dynamic Product Line for an EHRMS Patrick Spitzer

4. Multiple products on one instance: The DSPL must be able to derive
multiple products, each with its own configuration and data, on one running
product line instance. It is mandatory, that concrete products must not know
if they share their product line instance with other products.

5. Fundamental security mechanisms: Only valid users shall have access to
their application. They should have their own account with its own corre-
sponding roles and rights. For example a melanoma physician must not be
able to view patients, which are not assigned to his area of responsibility.

6. Change Tracking: Changes to the persistent data in the SQL database shall
be traceable. Additionally, data must not be deletable to ensure compliance
standards.

7. Testability: Testing product lines is different from single system testing, as
variability and multiple products have to be considered when writing tests.
Additionally, like in single system testing, different testing levels have to be
regarded, such as unit or integration tests. The thesis shall create an appro-
priate design for structuring and managing those multiple dimensions.

8. Flexible data model: To meet the needs of all products, the data model
must be flexible and extensible. Negative effects of the flexibility on efficiency
and convenience shall be counteracted.

9. Flexible user interfaces: A flexible user interface for EHR management
with reusable elements shall be designed, enabling to build up patient data
dynamically.

5

A Dynamic Product Line for an EHRMS Patrick Spitzer

Chapter 3

Background

The subsequent chapter describes relevant fundamentals and background knowl-
edge for this thesis. First, the principles and terminology of software product line
engineering are explained, which is essential for this work. Next, EHRs, electronic
health record management systems and additional related terms of the health care
domain are defined. Finally the HL7 Reference Information Model is introduced, as
it creates the structure for the relational data of the product line.

3.1 Software Product Line Engineering

3.1.1 Product Lines

Software product lines (SPLs) are defined as “a set of software-intensive systems
sharing a common, managed set of features that satisfy the specific needs of a
particular market segment or mission and that are deployed from a common set of
core assets in a prescribed way.” [CN09, p. 5]

Others, like [PBL05] or [Ape+13], put emphasis on deriving products through mass
customization of software platforms and reusable components. However in this thesis
the definition from [CN09] will be used, since it is the most specific one.

Core Assets (CA) are mainly reusable software components, providing the platform
for the SPL. Generally speaking, CA also include reusable “domain models, require-
ments statements, documentation and specifications, performance models, sched-
ules, budgets, test plans, test cases, work plans, and process descriptions.” [CN09,

6

A Dynamic Product Line for an EHRMS Patrick Spitzer

p. 14] Authors like [PBL05] and [LSR07] use the term artefact instead of asset. In
this thesis the terms asset and artefact will be used synonymous, as suggested by
[PBL05].

By taking suitable CA, configuring and exploiting defined variation mechanisms
and possibly appending new application specific components, a concrete product is
build. The products are all based upon the SPL architecture, which explains why
this is the most crucial CA. Instead of implementing every application from scratch
and just reusing independent libraries, building a product from a SPL is more a
process of assembling and configuring CA. Consequently, for every product a build-
plan must exist, which defines the used CA, the configurations and the additional
product specific components. [CN09, pp. 5–6]

Developing products with the help of CA, configuration and possibly adding spe-
cific components in a predefined way is called Software Product Line Engineering
(SPLE). This approach is defined as a “paradigm to develop software applications
(software-intensive systems and software products) using platforms and mass cus-
tomization”[PBL05, p. 14]

According to [PBL05] and [LSR07] the paradigm is made up of two development
processes, respectively life-cycles: domain engineering and application engineering.
These processes and their interrelations are visualized in figure 3.1.

In this context the domain is a “specialized body of knowledge, an area of exper-
tise, or a collection of related functionality. For example, the telecommunications
domain is a set of telecommunications functionality, which in turn consists of other
domains such as switching, protocols, telephony, and network. A telecommunica-
tions software product line is a specific set of software systems that provides some
of that functionality.” [CN09, p. 14] The aim of domain engineering is to determine
commonalities and variabilities in the SPL. During the process a platform is created,
mainly consisting of requirements, architecture, components and tests. In the course
of the application engineering process, the concrete products are derived from the
previously created platform. Dividing SPLE into two processes helps to separate the
different concerns, build a reusable platform, find commonalities and create specific
applications by exploiting the variation points of the platform. [PBL05, pp. 20–21]

It is also helpful for the development process to classify all requirements (functional
and non-functional) according to three types: [Hah16]; [LSR07]

1. Common: Valid for all products and hence a part of the platform.

7

A Dynamic Product Line for an EHRMS Patrick Spitzer

2. Optional: Common for some products but not for all. Variability mechanisms
have to be introduced to handle these mechanisms.

3. Differing: Customer-specific requirements, that are valid for one product
only. These characteristics are not a part of the platform although they must
be supported (e.g. provide a plug-in mechanism).

This classification simplifies the assignment of requirements to the two development
processes, as common and optional characteristics are mainly handled in domain
engineering, while differing requirements are a part of application engineering.

Figure 3.1: The two development processes of SPLE [PBL05, p. 22]

3.1.2 Domain Engineering

The domain engineering life-cycle is represented in the upper section of figure 3.1 and
it consists out of five subprocesses. They are described in the following paragraphs.
[PBL05, pp. 24–28] [LSR07, pp. 49–53]

8

A Dynamic Product Line for an EHRMS Patrick Spitzer

Product Management: Deals with managing the scope of the SPL. The business
goals are the input for this process, while the output should be a plan for future
products and their assembly out of the existing products and artefacts.

Domain Requirements Engineering: In this subprocess the concrete variable
and common requirements of the SPL with all its derived products get ascertained
and documented. Consequently the two major steps are the commonality analysis
and the variability analysis. Input for this process are multiple requirements sources,
like stakeholders, the product roadmap, competitors products and fundamental re-
quirements (e.g. non-functional requirements). Documented requirements, such as
textual descriptions for common requirements or variability models for variable re-
quirements, are the output.

Domain Design: This process is responsible for determining a reference architec-
ture and designing the additional common and optional assets for the SPL, which
are also valid for its derived products. The input is made up of the previously
created domain requirements, defining common and variable demands. The output
consists of the SPL-Architecture and a revised variability model, which includes
internal variability.

When creating the architecture for a SPL, it is important to always consider all
products, requirements, variation points and stakeholders. Conflicting needs must
be solved with introducing variation mechanisms. Specialized architecture design
methods for SPL do exists, e.g. COPA, FAST, FORM, KobrA or QADA, but are not
further examined during this thesis (see [Acm] and [AK15] for additional reading).

Domain Realization: In this phase of the main process, the detailed design,
reusable CA and variation mechanisms are realized. The assets can be either made,
bought, mined from an existing component or commissioned to be created by other
companies. The input of domain realization consists of the reference architecture
and the software artefacts that have to be created.

Domain Testing: The last subprocess validates and verifies the previously created
artefacts. The input consists of requirements, architecture, component and interface
designs, and the implemented core assets. The test results are the output.

9

A Dynamic Product Line for an EHRMS Patrick Spitzer

3.1.3 Application Engineering

The application engineering life-cycle is represented in the bottom lane of figure
3.1. Following four subprocesses can be described in the subsequent paragraphs.
[PBL05, pp. 30–34] [LSR07, pp. 53–55]

Application Requirements Engineering: This subprocess is needed to initially
specify the requirement for a concrete product. Therefore, the domain requirements
and the product specific requirements are needed. The main task during this step is
to find commonalities and differences between domain and application requirements,
to assure optimal reuse of the platform. At the end of this process a complete
requirements specification should exist where it is evident which artefacts are reused
from the domain and which are application specific.

Application Design: This step deals with deriving a product architecture from
the reference domain architecture. Variation points get configured and application
specific architecture artefacts get prepared. Whereas the input encompasses the
reference architecture and the application specification, the output consists of the
application architecture.

Application Realization: Procedure of implementing the specific product. Ap-
plication architecture and reusable domain artefacts are used as an input for this
process. Domain components get configured if needed and application components
get implemented. Composed together they form the application, which is the desired
output.

Application Testing: This step is used to validate and verify the application and
assures that quality requirements are met. The created application, with all its used
application and domain artefacts, forms the input. The output is the result of all
performed tests.

10

A Dynamic Product Line for an EHRMS Patrick Spitzer

3.1.4 Variability

Variability in Software Product Line Engineering

Introducing variability, or sometimes synonymously called flexibility is mandatory
for SPLE. A product platform has to support mass customization and variation
mechanisms to realize the derivation of several products. Throughout the devel-
opment process, described in chapter 3.1.2 and 3.1.3, the variation points have to
be identified, documented and handled in the development assets. While domain
engineering mostly handles identification and definition of variability, application
engineering cares about exploitation by assigning the proper variants to a product.
[PBL05, p. 8]

The term variability can be defined as “the ability or the tendency to change.”
[PBL05, p. 59] In SPLE variability can be broken down to variation points and
variants. Variation points are varying items within domain assets, while variants
are single options or instances of variation points. An example for a variation point in
a SPL is a user identification mechanism, while its variants are fingerprint scanning,
iris scanning or password authentication. [PBL05, pp. 61–62]

Types of Variability

For correct identification and documentation, one also has to distinguish between
different types of variability. The first distinction should be made between variability
in time and variability in space. While variability in time means that an asset will
change over time and compensate its old version, variability in space implies that
an asset exists in various versions which are valid at the same time. The differences
between these two types are visualized in figure 3.2. It shows three mechanisms
for identification. While the variants professional line and economy line coexist
(variability in space), the professional line changes its identification mechanism over
time from a keypad to a fingerprint mechanism (variability in time). [PBL05, pp. 65-
67]

The second distinction that has to be made is between internal and external vari-
ability. External variability directly concerns the customer and results out of their
requirements. The previously stated example of different identification mechanisms
is also an illustration of external variability, because it is directly visible to the cus-

11

A Dynamic Product Line for an EHRMS Patrick Spitzer

tomer. Internal variability is described as the flexibility that is hidden from the
customer and it often results from the realization of external variability or from
technical reasons. The ability to store a fingerprint as compressed or uncompressed
image is an example for internal variability, because the customer isn’t aware of it.

Figure 3.2: Variability in time and space according to [PBL05, p. 67]

Variability Documentation

A way to document variability is the orthogonal variability model (OVM), which
was first described by [HP03] and further elaborated by [PBL05]. The OVM “defines
the variability of a software product line. It relates the variability defined to other
software development models such as feature models, use case models, design models,
component models, and test models.” [PBL05, p. 75] The graphical notation is
realized with the elements illustrated in figure 3.3.

The sections Variation Point, Variant, Variability Dependencies and Alternative
Choice show the elements that are needed to document the assembly of a varia-
tion point. If no alternative choice is modeled, then a default range [1..1] is used.
These elements are used in the right section of figure 3.4, as they illustrate the
variation point Door Lock. The Artefact Dependencies connect variation points and
variants to other development artefacts, which aren’t documented as a variability
diagram such as use case diagrams. An example is also modeled in figure 3.4, where
artefact dependencies connect the variability diagram with the use case diagram.
Constraint Dependencies illustrate restrictions between two variability diagram el-
ements. Whereas, for example, requires_v_vp means that a variation requires the

12

A Dynamic Product Line for an EHRMS Patrick Spitzer

presence of the associated variation point.

Figure 3.3: Graphical notation for variability models [PBL05, p. 85]

Figure 3.4: Example of orthogonal variability modelling [PBL05, p. 85]

3.1.5 Dynamic Software Product Lines for Cloud Comput-
ing

Dynamic software product lines (DSPLs) are specific types of SPLs, where variation
points and their variants are bound only at run time, whereas traditional SPLs bind
variability at different stages of development. The requirement for DSPLs emerged
out of the problem that it is sometimes not possible to foresee all the features, that
a product requires. Hence, features must be easily addable per configuration at run-

13

A Dynamic Product Line for an EHRMS Patrick Spitzer

time instead of rebuilding. Accordingly this approach was developed to be able to
react to changes in users needs. All things considered, a DSPL design is suited for
systems, that ought to be adaptable at runtime by manual intervention, for example
by the product owner or via a self-service portal. Additionally, this approach can
be particularly beneficial for autonomic or self-adaptive systems. [CBK13]

DSPLs are often linked to reconfigurable Software as a Service (SaaS) applications.
The SaaS model enables customers to access an application on demand, without
buying or installing hardware or software. SaaS applications are usually hosted
centrally on a cloud system and accessed via web browser. Their architecture should
support distributable application layers, e.g. a three layer architecture, and loose
coupling between the layers. [Feh14]

Both concepts meet customer requirements via variability management at run time,
and reconfiguration over the product life cycle has to be considered. A concrete
configuration of a configurable SaaS application can be seen as the equivalent to
a product of a DSPL. Consequently, the configuration process can be seen as an
equivalent to the product derivation, respectively application engineering process.

Linking DSPLs to configurable SaaS applications is not a new concept in litera-
ture, even though boundaries and characteristics of the two concepts are not always
clearly defined, see [Sch13]; [SR12]; [RA11]; [Mie+09]; [BGP12]. However, an ap-
proach to classify and compare those concepts, with its possible characteristics like
multi-tenancy or configurability, is provided by [Sch13]. The author compares them
regarding the amount of customers and configurations per product instance, which
is shown in table 3.1.

Category Customer Configuration Product
instance

Software product line 1 1 1
Configurable multi-instance SaaS application 1 1 1
Multi-tenant aware SaaS application m 1 1 (shared by all

customers)
Dynamic software product line 1 n 1
Reconfigurable multi-instance SaaS
application

1 n 1

Reconfigurable multi-tenant aware SaaS
application

m n 1 (shared by all
customers)

Table 3.1: Comparing DSPLs to configurable SaaS applications according to [Sch13]

14

A Dynamic Product Line for an EHRMS Patrick Spitzer

In the final analysis, DSPLs and reconfigurable multi-instance SaaS applications
differ mainly in their licensing and delivery model, while they both rely on resolv-
ing variation points with run-time mechanisms and configuration management. A
reconfigurable multi-tenant aware SaaS application adds tenant-awareness to these
concepts, but still relies on the DSPL principles. Therefore, in the course of this
thesis the term DSPL will be mainly used, as the focus of this thesis is on software
product line engineering and not on the licensing models of SaaS applications.

3.2 Electronic Health Records

Definitions of electronic health records (EHRs) are very much alike in their core prin-
ciples, see [Int05], [Kir08] or [Hri10], since they all mention the saving of a patient’s
health data as digital information. However, in this thesis the following definition
will be used: An EHR is a “repository of information regarding the health status of
a subject of care, in computer processable form, stored and transmitted securely and
accessible by multiple authorized users, having a standardized or commonly agreed
logical information model that is independent of EHR systems and whose primary
purpose is the support of continuing, efficient and quality integrated health care.”
[Int05, p. 2]

While this definition focuses on the storage of health care information, the other
mentioned sources describe a broader scope of functionality for EHRs such as the
integration of support or management services. A system with that sort of services
will be called an electronic health record management system (EHRMS). This ter-
minology makes it possible to distinguish between the actual data record and a fully
functional system, enriched with support services. [Kir08, p. 326]

With an EHRMS the processes in health care can be automated, which results
in increased efficiency and reduced costs for hospitals. Other advantages are the
minimization of paper storage costs, eliminating the poor legibility of handwritten
records, reduced medical errors through the use of terminologies and the integration
of other clinical support services or systems. [Hri10, pp. 17–18]

The literature also mentions the the distinction between an EHR, an electronic med-
ical record and an electronic patient record. An electronic medical record digitally
documents only a single use of a health service. Furthermore an electronic patient
record is considered as a system that documents the complete documentation of all

15

A Dynamic Product Line for an EHRMS Patrick Spitzer

health-related information of a patient instead of the recording of just a single use
of a health service or selected informations.

3.3 HL7 Reference Information Model

Health Level Seven (HL7) International describes itself as a “not-for-profit, ANSI-
accredited standards developing organization dedicated to providing a comprehen-
sive framework and related standards for the exchange, integration, sharing, and
retrieval of electronic health information that supports clinical practice and the
management, delivery and evaluation of health services.” [Heab] The corporation is
supported by health care providers, government stakeholders, payers, pharmaceuti-
cal companies, vendors and consulting firms.

An information model in general can be described as a “structured specification,
expressed graphically and/or narratively, of the information requirements of a do-
main.” [Int06] Furthermore it describes classes, properties, relationships and states.

The HL7 Reference Information Model (RIM) is an abstract model for representing
and interchanging health information. It is an ISO-Standard and mainly encom-
passes class and state-machine diagrams. While it additionally provides several
other models, this thesis only covers the main class diagram.

The RIM classes represent information, which must be documented and commu-
nicated within the health care environment. The abstract model consists of six
back-bone classes: [Int06][Bee11]

• Entity: Physical things and beings of a health care environment, e.g. persons,
organizations, materials, places, devices, etc.

• Act: Represents actions and happenings, e.g. issues, procedures, observations,
medications, supply, registrations, etc.

• Role: The roles that are played by entities while participating in an act, e.g.
patients, provider, consultants, employees etc.

• Participation: Relationship between a Role and an Act, e.g. a patient and his
medication.

• ActRelationship: The binding of one Act to another, e.g. an issue and a con-
sequential procedure.

16

A Dynamic Product Line for an EHRMS Patrick Spitzer

• RoleLink: Relationship between two individual roles, e.g. a physician and his
patient.

Act, Entity and Role, which will be called base classes within the scope of this thesis,
are refined by sub-classes, for example a patient would inherit from the role class.
The purpose of Participation, ActRelationship and RoleLink, from now on called
association classes, is to enrich the relationship between two base classes with infor-
mation and to add the possibility to dynamically build up new relationships. For
example there would be no concrete link between a patient class and a medication
class in an information system. Instead a participation object would be created to
connect two instances of those classes. This generic approach of connecting the base
classes, and therefore also the inheriting classes, via association classes is important
since the HL7 RIM intends to be a standard for many information systems, which
will likely have different data models in detail. The abstract HL7 RIM class model
is visualized in figure 3.5. While the attributes of the back-bone classes and their
subclasses are intentionally left out in this figure, since they are not relevant for this
thesis, the entire suggested HL7 RIM is visualized in appendix A.

Figure 3.5: HL7 Reference Information Model

For further reading and a more detailed description, HL7 provides a comprehensive
documentation of the RIM standard. [Heaa]

17

A Dynamic Product Line for an EHRMS Patrick Spitzer

Chapter 4

Domain Requirements Engineering

As described in chapter 3.1.2, domain requirements engineering mainly performs
a commonality and variability analysis with certain requirements sources as input.
The purpose of this chapter is to find these common and variable requirements for
the derived products and to document them with the help of the OVM, which was
introduced in chapter 3.1.4. Input for this thesis were the products from NSilico Life-
science Ltd., shortly introduced in chapter 1, the existing SAGE-CARE Melanoma
EHR application and the initially defined fundamental requirements in chapter 2.

4.1 Commonality Analysis

While flexibility is of course one major aspect of product lines, it is especially im-
portant to ascertain as much commonalities as possible. They are the foundation
for every SPL and its derived products. On the whole, the more commonalities ex-
ist, the less variability mechanisms have to be introduced in the architecture, which
reduces the complexity. The following sections describe the commonalities in detail.

4.1.1 Managing Electronic Health Records of Patients

The management of patients with a cancer disease, e.g. breast cancer, thyroid cancer
or melanoma, is the foundation for the product line and at least one medical specialty
(MS) is implemented in every product. A MS is seen as certain type of a cancer
disease within the scope of this thesis. Users must have the ability to search for,

18

A Dynamic Product Line for an EHRMS Patrick Spitzer

add, edit and view the EHRs of patients. Although the SPL is focused on cancer
diseases, the more universal term MS is used to indicate the possibility for extending
the system with other similar disease types.

4.1.2 Technical Services

Within the scope of this thesis, technical services include every service that doesn’t
provide health care related information for the end-user and is mostly implemented
to realize technical requirements. Technical services often don’t concern the end-
user, but provide a great potential for reuse. The common technical services are
described throughout this section.

Multi-tenancy

A tenant is defined as “a group of users sharing the same view on an application they
use”, while the group is typically a legal entity. [KMK12] Multi-tenancy is therefore
an approach to create multiple views on one application instance and assign one
view to every group of users.

The separation of data between customers is mandatory in health care informa-
tion systems, since they contain sensible data. As the product is designed as a
DSPL, capable of serving many customers with one cloud instance, a multi-tenant
architecture is needed to ensure that a tenant will not be able to access data and
functionality from other tenants within the same instance.

In the course of this thesis, multi-tenancy will mostly concern data separation.
However, the user interface and the access management have to be adapted to this
requirement.

Access Management

A concept for authentication and authorization is needed in this SPL for similar
reasons as multi-tenancy. Health care data must be managed very carefully and
therefore the system must make sure that only valid user have access and that
certain views, data and functionalities are only available for defined users.

Authentication is the process of validating the identity of a user. This thesis refers to
human beings when using the term user, whereas the user concept can be extended

19

A Dynamic Product Line for an EHRMS Patrick Spitzer

to e.g. machines, networks, or intelligent autonomous agents. Authorization, also
known as access control, grants users access to certain resources, while preventing
them from accessing resources they are not allowed to obtain. [Tod07]; [Ben06];
[Ame04]

The access management of this system has to check at least three questions, when
a request is made:

1. Authentication: Has the request been made by a valid user?

2. Authorization of tenant rights: Has the tenant of the user the correspond-
ing rights for the request?

3. Authorization of user rights: Has the user the corresponding rights for the
request?

The design of the access management should also address the client and the server
of the SPL. It is mandatory that the users only see their allowed parts of the user
interface, mainly for usability reasons. However, this would not be sufficient on its
own. Additionally, the server has to be secured against invalid requests, which is
the crucial part. It must be ensured that only data is transfered to the client, which
the querying user is allowed to see.

Data Historization

Integrating data historization into the SPL is especially important because it con-
tains health care data. Saving and reading the history of patient data can, on the
one hand, be helpful for physicians, e.g. showing the development of a tumor stage.
On the other hand it can also be a legal requirement to track changes and ensure
that no data is deleted completely. Due to that, historization is helpful to fulfill
compliance standards. As a result, this requirement is a mandatory feature and will
be integrated into every product.

Multi-Language-Support

Multi-Language Support, which belongs to the concept of software internationaliza-
tion, is not a new concept, see [Hal97] or [Ess00]. But in times of globalization it

20

A Dynamic Product Line for an EHRMS Patrick Spitzer

hasn’t lost any relevance for software engineering. For this reason it is also seen as
a common requirement for all products to support multiple languages.

Literature suggests that the term internationalization includes designing a software
product for handling multiple languages and cultural conventions without redesign-
ing the application, comprising its development artefacts, and therefore creating the
flexibility to easily serve and create acceptance on multiple local markets. [Ess00,
p. 25] In this thesis only the aspect of multi-language support is handled, while
cultural conventions, such as different time or date formats, are left out.

Deployment:

The possibility of deploying the software to an application server is mandatory
as the products will be distributed client-server applications. Additionally, it is a
fundamental requirement to realize the possibility that a product can be deployed
to a cloud system. As this is a mostly technology related topic, deployment is only
covered by the requirements and not by the design of the system.

4.1.3 HL7 Reference Information Model as Data Model

The data model for the SPL must be based on the generic approach of the HL7
RIM, which was already described in section 3.3. This is due to its advantages in
the light of creating a product line for an EHRMS:

• It is a common, maintained and well documented ISO-Standard for health
care information systems.

• The model adds the flexibility to extend the data model without changing the
relations between entity classes.

• The HL7 RIM appends the ability to create new links between concrete objects
at run-time of the application through the usage of association classes.

• Compatibility to other systems is ensured, which implement the HL7 RIM and
therefore between all products of the SPL.

21

A Dynamic Product Line for an EHRMS Patrick Spitzer

4.1.4 Client Flexibility

When designing a SPL, not only flexibility on the application and data layer has
to be considered, but also on the client. Concepts have to be made to seamlessly
integrate optional and differing requirements.

Reusable User interface components

The approach of this section emerged out of the requirements for adapting the in-
terfaces for adding and editing EHRs to the actual patient data and to the tenant
configuration. The existing SAGE-CARE melanoma application used a static pre-
defined form for adding and editing new patients. This has the disadvantage, that
all the possible data of the patient is shown to the user. If a concrete product would
support various medical specialties, the resulting form would show everything that
a user could define for the patient and consequently be extremely large. To face
this problem, dynamic forms with user interface components (UIC) are designed.
Each UIC encapsulates a set of related data or functionality and can be reused,
e.g. grouping the interface data for representing a breast cancer issue. The UIC are
addable and rearrangeable by the user to build up a patient record. A navigation-
bar supports the user to keep an overview of the record and navigate through it.
Additionally, tenants have the ability to add customized fields per component.

Variable attribute fields:

The user interfaces should also introduce variable attribute fields (VAF) per UIC.
Tenants define per UIC which attribute fields will always be displayed and which
attribute fields will be optional. These VAC can be then configured by the user.

4.1.5 Configuration Hierarchy

The product line can become comprehensive over time, needing many configurable
items on various levels and serving multiple products and users. Already mentioned
commonalities and following variabilities (see chapter 4.2) indicate, that a configu-
ration framework has to be integrated in the architecture, that allows configuration
on various levels. This configuration hierarchy is shown in figure 4.1 and is described
as follows:

22

A Dynamic Product Line for an EHRMS Patrick Spitzer

1. Product line owner: The product line owner is defined as the company
developing the SPL. The owner configures and customizes the product line as
a whole, introducing changes which possibly affect all products. This mainly
includes implementing new functionalities, adding possible variants for the
tenant, changing the data model and modifying common user interfaces.

2. Tenant: Products are obtained by hospital groups, hospitals or departments.
For simplification and to easily realize that the SPL can serve cloud customers
and customers with local servers, a tenant (multi-tenant SaaS context) will
equal a product (SPL context). Hence, the tenant configuration process can
be seen as the equivalent to the product derivation process of a SPL. This
implies that if, for example, a hospital group wants a tenant for each hospital,
then multiple configurations have to be created and consequently a product for
each hospital is derived. The tenant configuration represents the requirements
of a customer who orders and configures a concrete product. Accordingly
it includes, but is not limited to, a selection of variants from the variability
model. The tenant can only configure a subset of the product line owner
configuration.

3. User: Users of a tenant refine their corresponding tenant configuration. This
is, for example, meaningful for user dependent views, as end-users work every-
day with the product and need possibilities to configure it according to their
requirements.

Figure 4.1: Configuration hierarchy

23

A Dynamic Product Line for an EHRMS Patrick Spitzer

This thesis doesn’t include a concrete implementable design for the level based
configuration management. Instead, a reference to the corresponding level will be
made, if something is configurable.

4.2 Variability Analysis

The variability analysis is responsible for defining and documenting the variation
points and their variants in a systematic manner, as already introduced in chapter
3.1.4. As a result the following questions will be examined during this process for
defining the variability: [PBL05, p. 63]

• What is the real world item that varies?

• Does it vary in the context of this SPL?

• Which variants can be identified for this SPL?

This is especially necessary to prepare the architecture with the appropriate flex-
ibility mechanisms. The introduced variants in this chapter are analyzed for the
SAGE-CARE SPL and partially already contain specific technologies, which is why
variants are not described comprehensively within this chapter.

Variation points were categorized according to three main service categories, medical
specialties, medical information services (MISs) and technical services, like shown in
figure 4.2. While MSs are mandatory for managing EHRs of patients and technical
services for common functionalities of information systems, MISs are considered to
be optional as further explained in 4.2.2. The complete variability model for the SPL
is visualized in appendix B. Presented variation points are generally configurable on
the tenant level.

24

A Dynamic Product Line for an EHRMS Patrick Spitzer

Figure 4.2: Main categories of the OVM

4.2.1 Medical Specialties

In the real world diseases vary widely. Supporting different diseases with different
interfaces and services was also one of the main motivations for creating this SPL
and consequently it is a variation point with the constraint that only cancer diseases
are considered at first. This flexibility is important since not every hospital has
consultants for every disease or wants to include new specialties over time. The
currently planned variants for MSs are visualized in figure 4.3.

4.2.2 Medical Information Services

There are many approaches for personalized medicine and support services for physi-
cians (see [Ide16]). The term MIS is used in this thesis as a more universal notion
for clinical decision support service. Such services “provide clinicians, staff, patients,
and other individuals with knowledge and person-specific information, intelligently
filtered and presented at appropriate times, to enhance health and health care.”
[Ber09] The integration of MISs for personalized medicine is also an integral part of
the SPL. Despite their importance, their functionality is seen as an addition to the
fundamental EHR functionality and hence it is not mandatory to choose a specific
amount. Certain MISs are also bound to additional fee-required systems and con-
sequently raise the cost for the product. The variants for MISs and their relations
to MS are depicted in figure 4.3.

25

A Dynamic Product Line for an EHRMS Patrick Spitzer

Figure 4.3: OVM for medical specialties and medical information services

4.2.3 Technical Services

User repositories

It is common that hospitals already have a central user repository or directory ser-
vice for authentication, like Microsoft Active Directory. Others customers want to
manage their own users within their product. This is why it is also important to
introduce a variation point, which considers different user repositories and addition-
ally includes the own database as a repository, if such services are not used. The
variants for user repositories are visualized on the left side of figure 4.4.

Requirement for multiple tenants

Organizations can consist of multiple organizational units, such as hospital groups
consist out of multiple hospitals, which need separate products. As already men-
tioned in the configuration hierarchy, products of this product line are obtained by

26

A Dynamic Product Line for an EHRMS Patrick Spitzer

hospital groups, hospitals or departments. This forms a hierarchical structure, as
many departments can belong to one hospital, which in turn can belong to a hospital
group. As a result, the requirement of creating multiple tenants for one customer
is also a variation point for the SAGE-CARE SPL. If a customer needs multiple
tenants, than multiple tenant configurations may be created. This variation point
is shown on the right side of figure 4.4.

Figure 4.4: OVM for user repositories and multi-tenancy

Supported languages

Language is an obvious variability in the real world. Even though multi-language
support is identified as a commonality, the supported languages should be config-
urable per product to meet the needs of multiple markets. Current languages for
the SAGE-CARE SPL are shown in figure 4.5.

Deployment endpoint

A huge amount of application servers and cloud providers exist on the market. Dif-
ferent endpoints for the deployment of the SAGE-CARE SPL products are also
considered as important, as not every customer wants to have their data on a cloud
system while others rate the convenience of these system as important. Since de-
ploying the application to multiple needed computing platforms is already possible
with the existing SAGE-CARE melanoma application, which is the basis for the
product line, this is not further examined within this thesis. The proposed deploy-
ment endpoints can be viewed in figure 4.5.

27

A Dynamic Product Line for an EHRMS Patrick Spitzer

Figure 4.5: OVM for supported languages and deployment endpoint

Additional Services

Additionally the requirement for other technical services was detected, e.g. report-
ing, data-backup and data-integration services. Reporting provides consultants with
relevant statistical health care data. The data-backup service reduces the risk for
data loss by backing up the application data onto different distributed nodes, like
shown by [LYW13]. Finally, the data-integration realizes access to various indepen-
dent data sources. [LÖ09]

These are common functionalities for an information system and especially a backup
service would meet the requirements of the health care domain. However, these ser-
vices are not further elaborated within this thesis as those are considered out of
scope due to their priority.

Figure 4.6: OVM for additional technical services

28

A Dynamic Product Line for an EHRMS Patrick Spitzer

Chapter 5

Domain Design

As stated in chapter 3.1.2, domain design conceptualizes the architecture and its
comprised components for the product line with the help of the previously created
common and variable requirements. The following chapter doesn’t describe the
whole system in detail, but rather focuses on designing selected parts, especially the
mandatory variants. This includes the architecture of the system, technical services,
domain testing and client variability mechanisms for showing EHRs.

5.1 System Overview

The system is designed according to the principles of a DSPL, respectively a re-
configurable multi-tenant aware SaaS application (see chapter 3.1.5). This is an
appropriate approach to face the relatively small amount of variation points and to
solve the dependencies between the MSs and MISs. Designing the platform as a
traditional SPL, according to the classification of table 3.1, would have the signif-
icant drawback that adding new MSs or MISs to an existing product would result
in redeployment. Additionally, a cloud instance would have to be created for every
product, which is not scalable for a rising number of products. The overview of this
system and the interaction with the configuration hierarchy is visualized in figure
5.1.

The bottommost layer is represented by the technical infrastructure, i.e. the hard-
ware and server platform for any needed software. Albeit, this is out of scope for
this thesis and not further examined.

29

A Dynamic Product Line for an EHRMS Patrick Spitzer

Figure 5.1: SPL system overview

The next layer is the computing platform. This includes the complete software basis,
enabling the product line and its applications to run. In the SAGE-CARE context,
Microsoft Azure or locally installed Microsoft Internet Information Services (IIS)
are the relevant platforms considering the deployment. Hence, they are shown as
an example in the depiction.

Subsequently the SAGE-CARE SPL is shown, which is mainly described in this
thesis. In the product line context, this is the domain with its contained core
assets. These artefacts are the reusable software components, used by the concrete
applications. The platform is configured with the help of the product line owner

30

A Dynamic Product Line for an EHRMS Patrick Spitzer

configuration.

Since this is a multi-tenant aware DSPL, the applications are able to run in one
domain instance, while being bound to their own context. This means they are not
aware about any other applications on the domain instance. As already defined, a
concrete product is mapped to a tenant. Hence, in the course of this thesis the terms
tenant context, application and product are used synonymously. Although the term
tenant is used for describing the technical concepts, such as a multi-tenant data
architecture, while the other terms are more convenient for the SPLE and business
point of view. The applications are configured by its corresponding tenant configu-
ration, defining the tenant context. This includes the selected variants, represented
by the optional software components in the figure, and additional tenant specific
data and user interface elements.

The users, at the topmost section, belong and have access to exactly one tenant. A
user configuration is assigned for every user, which represents a subset of the tenant
configuration.

5.2 Architecture

The architecture is closely related to the existing EHR application of the SAGE-
CARE project and already considers its functionality. It is structured in three
layers, which are loosely coupled. An overview of the system is visualized in figure
5.2, with the help of a UML package diagram. In the SAGE-CARE SPL, outer
packages are realized as separate projects, while inner packages are implemented as
folders. Except for the data layer, which consists of multiple independent existing
systems. Since this is technology related, the more independent terms layers and
sections are used.

Packages with a grey outline are not further discussed in this thesis, as they have
no importance for the product line context. However, they are added for the sake
of completeness.

The first layer, called client layer, consists of the EHR client, which is the config-
urable client for all products of the product line. It is designed as a web client,
that is loosely coupled to the REST WebAPI and contains two sub packages. The
view packages contains the view components, being made up of the user interface
and corresponding view logic. Whereas the service package contains reusable client

31

A Dynamic Product Line for an EHRMS Patrick Spitzer

logic, shared by multiple view components. A basic concept of realizing variants
in the client is shown in chapter 5.7. Concrete concepts, like dynamic views with
user interface components (UIC), for the user interfaces of the client are outlined in
chapter 5.10

Figure 5.2: SPL architecture

The next layer, named application layer, consists out of the REST WebAPI and
the Application Kernel, which are tightly coupled. The REST WebAPI is mainly a
facade for the application kernel, which provides an interface for the client and is
designed according to the Representational State Transfer (REST) principle. This

32

A Dynamic Product Line for an EHRMS Patrick Spitzer

paradigm makes use of web technologies for communication and designs the appli-
cation interface according to provided resources (see [Fie00] for further reading).

The Application Kernel contains the business logic of the application. It is mainly
made up of the different types of services, that were already identified in chapter
4.2, and a data access layer. Currently the functionality concerning the MSs is
covered by the data access layer, as it includes adding and editing patient data.
However, it is assumed that business logic for the specialties will follow and therefore
it is considered in the architecture. Some MISs also already exist in the current
SAGE-CARE melanoma application. But for the SPL they have to be made aware
of various specialties by extending their interface with a parameter, determining
the specialty, and integrating variability mechanisms. The data access layer uses
data access objects (DAOs) and an object-relational mapper (ORM), for accessing a
relational database. The packages Entities, DataTypes and HistoryEntities contain
the data items of the system and are further explained in chapter 5.4 and 5.5.

The third layer contains the persistent data of the SPL and will be addressed as
data layer in this thesis. It is made up of different storage types, although only the
relational SQL Database is relevant in the course of this thesis. The BLOB Storage
is used for storing files, e.g. images of melanomas, while the Term Store and CDSS
Metadata are used for MISs (see [Ide16]).

Two additional projects are mentioned in this thesis, that are tools for the product
line owner. The SPL Tests project contains all software tests for the product line
and is further described in chapter 5.9. The Code Generator is a framework for
creating a flexible data model and is designed in chapter 5.4.

5.3 Generic Data Model

As already stated in chapter 4, the HL7 RIM data model is required, because of its
flexibility and propagation in the health care domain. However, the data model for
this thesis is slightly modified to handle some of the disadvantages without losing
the compatibility to the standard.

Looking at the official data model in figure 3.5, the connection between an Entity
and a Role is not realized via an association object, in contrast to the other relations.
The associations also have a specific meaning and forces the connections to either
be scope or player-related, instead of letting an association object define the type of

33

A Dynamic Product Line for an EHRMS Patrick Spitzer

relationship. Because of this inconsistency, the relationship is realized via a newly
introduced association class called EntityRoleRelationship. This class takes care of
connecting an Entity to a Role, as illustrated in figure 5.4.

Another disadvantage is the overuse of attributes that configure the association
classes and accordingly specify the relationship between two base classes. For in-
stance, 19 attributes are settable for ActRelationship according to the reference
model shown in appendix A. Those were replaced by the much simpler and con-
venient mechanism, of using two relationship type attributes. The value of these
attributes represent the variable names for each site of the relationship, which would
normally be used when designing a data model with concrete relations.

The principle of relationship types and its connection to a concrete relationship
are visualized in figure 5.3 with the help of a UML Object Model. The depiction
shows a concrete relationship between a Patient and a Medication object at the
top. The bottom section shows how this is mapped to the relationship type prin-
ciple. The relationship type attributes of the Participation object are labeled as
ActType and RoleType, to make an assignment to the corresponding object possible.

Figure 5.3: Relationship type principle

This principle is used for all association objects, creating the abstract data model
shown in figure 5.4, where all other classes in the SPL will inherit from. The data
model ensures enough flexibility for the given requirements, while not losing the
compatibility to the HL7 standard. The designed classes of this chapter are inte-
grated in the Entities section of the architecture, see figure 5.2.

34

A Dynamic Product Line for an EHRMS Patrick Spitzer

Figure 5.4: Class model of the SPL

Besides its advantages, the usage of association objects has the disadvantage of
making it difficult to navigate between two objects. For example if a Patient object
(derived from Role) has a relationship to a Medication object (derived from Act)
and multiple other Acts, the developer would have to iterate over the collection of
Participations and find the Medications via the actType variable. This issue can
be be addressed by implementing an efficient data structure combined with getter
and setter methods, like further elaborated in chapter 6.1.2. A getter method,
respectively accessor method, is used for accessing an object without modifying it,
whereas a setter method, also known as mutator method, modifies an object.[Hor10,
p. 46] These operations are integrated into the base classes, which makes them
available for all classes. Following methods are designed to make the navigation
more convenient, as already shown in figure 5.4:

• GetAll: Gets all related objects with the passed relationship type.

35

A Dynamic Product Line for an EHRMS Patrick Spitzer

• Get: Returns a single related object with the relationship type from the pa-
rameter. Assumes, that only one related object with the corresponding type
exists.

• Set: Creates a new association object, which connects the caller to the passed
object. Sets the relationship types on the association object. Ensures that the
caller has only one relationship with the corresponding types. This method is
used to set 1:1 relationships.

• Add: Same as the Set method, but simply adds the the association without
ensuring unique occurrence. Used for realizing 1:n or n:m relations.

Additionally to the HL7 RIM back-bone classes, other classes were identified as
particularly important, respectively helpful, in the currently existing products and
during the design of the SPL. Hence, they are described ancillary:

• AbstractEntity: This class is the parent class for all HL7 RIM back-bone
classes and hence for all classes in the data model. This simplifies the process
of managing properties, that concern the complete data model like a table
identifier or a tenantID (see chapter 5.6). However, the AbstractEntity is
designed as an abstract class and can not be instantiated.

• Patient: The patient is the central class for the basic patient information.
Every additional patient information, e.g. corresponding medications or issues,
are linked directly or indirectly to this class via the association objects.

• Issue: Parent class for all MSs. Has a similar fundamental meaning for the
system, as the patient object. A patient is only added to the system if he has
an issue and an issue always belongs to a patient. This reflects the situation of
the real world. A hospital only treats a person if an issue exists, which makes
the person a patient of the hospital.

5.4 Code-Generation of the Data Model

The generic data model is an important step towards a flexible data management in
the SPL. However, the flexibility and especially extensibility is even more enhanced
when combined with a configurable code-generation tool. This framework was firstly

36

A Dynamic Product Line for an EHRMS Patrick Spitzer

introduced and designed by [HW15] and is integrated in the Code Generator project
as shown in figure 5.2. It is outlined in this thesis to show the advantages of this
framework for a product line and the integration into the configuration hierarchy.

Foundation for the framework is the data model configuration with the help of a
spreadsheet, containing three worksheets. The first worksheets defines the entity
classes and its superclasses. An example for the HL7 back-bone classes and the
patient class is shown in figure 5.5.

Figure 5.5: Entity classes worksheet

The second worksheet defines the entity attributes for the entities of the first work-
sheet. This sheet is visualized in figure 5.6 and shows again the patient class as
example. Beside the attributes, it also defines the cardinality, with the possible
values 0, 1 or *. If CardinalityMax is set to *, a list gets created.

Figure 5.6: Entity attributes worksheet

Lastly, the third spreadsheet is designed for defining enumerations, which is shown
in figure 5.7. The column Type defines the enumerated types, while the Label col-
umn lists their members.

Figure 5.7: Enumerations worksheet

The spreadsheet is loaded by the code generator, which subsequently generates

37

A Dynamic Product Line for an EHRMS Patrick Spitzer

the configured classes. Generated entities are saved in the Entities folder of the
Application Kernel, while Enumerations belong to Datatypes (see figure 5.2). An
example for the shown patient class is shown in listing 5.1, implemented with C#.

1 public partial class Patient : Role
2 {
3 public CNSIssue? CNSIssue {get; set;}
4 public Mobility? Mobility {get; set;}
5 public String MRN {get; set;}
6 public HomeSituation? HomeSituation {get; set;}
7 public ResidentialCare? ResidentialCare {get; set;}
8 public ExtendedBoolean? ClinicallyReviewed {get; set;}
9 public ICollection<String> Comment {get; set;}

10 public ExtendedBoolean? Warfarin {get; set;}
11 public ExtendedBoolean? NOACs {get; set;}
12 public ExtendedBoolean? Antiplatelet {get; set;}
13 public ExtendedBoolean? DrugRegimen {get; set;}
14 }

Listing 5.1: Generated patient class

This is an important addition to the SPL, as it introduces a shift from programming
to configuring the data model. Hence, it increases the flexibility and makes the
increasing model better manageable. In the context of a product line it also has
to be considered, that this sheet concerns the product line owner and the tenant
configuration. The product line owner manages data items, which are valid for the
whole platform. Tenant specific data items belong to the tenant configuration, but
are nevertheless managed in the same spreadsheet, as only a small amount of tenant
specific data is expected. It is supposed, that the flexible data model will already
cover most of the tenant specific needs. However, the Comment column, which is
added to every worksheet, is envisaged for documenting the connection to the tenant
configuration.

5.5 Data Historization

As already described in section 4.1.2, implementing a data historization is required
because this system is used in the health care domain. For this reason, changes have
to be comprehensible and data shouldn’t be deletable. Although the historization
can be used to show the disease process to a physician, the historization is integrated
in the Technical Services section of the architecture, see figure 5.2. This is due to

38

A Dynamic Product Line for an EHRMS Patrick Spitzer

the fact, that it is designed in a universal way, covers the complete data model and
helps to fulfill compliance standards.

In the context of this thesis, data historization means saving every change that
was made to a table entry. This means more precisely that every create, update
and delete operation on a table gets tracked in a corresponding historization ta-
ble. To fully automate and integrate the data historization, the component for
code-generation, introduced in chapter 5.4, gets extended with the functionality of
creating additional history entities. These history entities are saved in the History
Entities section of the architecture, as shown in figure 5.2.

For every created entity of the code-generator, additionally a corresponding history
entity gets automatically created. These history entities have the same attributes
as their corresponding entity to ensure compatibility and are mapped automatically
to the SQL Datase of the Data Layer, since an ORM is used. Following additional
attributes are added to the history entities:

• OriginalID: Historizes the database identifier of the corresponding entity.

• Action: Documents if an add, modify or delete operation was executed.

• User: Documents the user who was responsible for the data modification

The result of this creation process is visualized in figure 5.8.

Figure 5.8: History entities

The factory method (see [Gam+11, p. 107]) CreateNewHistoryInstance() is also
automatically created and overridden in every class. It returns a new instance of the

39

A Dynamic Product Line for an EHRMS Patrick Spitzer

corresponding history entity object. For example the CreateNewHistoryInstance()
method of a Patient object would return a new instance of PatientHistory. As a
result, the two hierarchies are connected on a programmatic level and can be used
for the automated historization process.

For this purpose, an integration into the transaction context, which is responsible
for handling all the transactions that are made to a database, has to be conducted.
Whenever the transaction context saves an entity to the database, it can at first cre-
ate a corresponding history entity via the factory method. The next step to detect
all the changes that were made to the entity. As stated previously, changes are intro-
duced through add, delete or modify operations. Normally an EHR system wouldn’t
support deleting patient information anyway, but it is implemented nevertheless to
counteract data loss. If the used technology doesn’t already offer change tracking
functionality, the change detection has to be implemented manually, in order to com-
pare the changed entity to the existing database entry. However, this mechanism is
not further elaborated in this thesis since such features are usually implemented in
modern object-relational mapping frameworks such as Entity Framework or Hiber-
nate. [Mica]; [Red] Finally the detected changes have to be saved. Depending on
the performed operation, the following strategy is recommended:

• Added: Every property with its value gets historized.

• Deleted: Every property with its original value gets historized.

• Modified: Only properties where the new value differs from the original value
from the database get saved. The new value is used for the historization.

This approach is resulting in the example historization table in figure 5.9. It
shows the history table for a BreastCancer entity. The example object with the
OriginalID 77 got initially added, then modified twice and in the end deleted.

Figure 5.9: Example of a BreastCancerHistory database table

40

A Dynamic Product Line for an EHRMS Patrick Spitzer

5.6 Multi-Tenant Data Architecture

Multi tenancy is declared as a commonality for the product line, since without this
concept, it wouldn’t be possible to serve multiple customers with one cloud instance
or separate finer grained parts of a superior business unit. Only the view on the
relational application data is covered in this chapter, although multi-tenancy has
influences on many other parts of the system, like the access management or the
user interface.

The terminology is not always consistent, but literature basically distinguishes be-
tween three approaches for a multi-tenant data architecture: [CCW06]; [KMK12];
[Sch14]; [Micb]

• Separate Databases: Assigns each tenant its own database. This is the
simplest approach and has the advantages of high security and easy backup
mechanism since data is logically separated. However this approach may have
a negative influence on flexibility since increasing the number of tenants can
be expensive at a certain amount because of the high number of databases.

• Shared Database, Separate Schemas: This method shares a single database
between all tenants but separates them by creating a schema for each tenant.
This approach is very similar to the separate databases principle and therefor
still has a negative impact on flexibility since creating new tenants can become
expensive .

• Shared Database, Shared Schema: When sharing the database and the
schema, the tables must include an additional column with the tenant ID.
This ID assigns every row to the related tenant. The approach has the lowest
overhead when it comes to adding or removing tenants, since they are just
represented by an ID in the table, and therefore makes them easily configurable
and scalable. Another advantage is the simplicity of querying and joining data
from different tenants, e.g. to collect data for a clinical trial. The drawbacks are
poor performance when querying the database since it creates large tables and
the results must be filtered by the tenantID, although this can be eliminated
by creating table views per tenant. Another disadvantage is the sparsity of
tenant dependent columns. However, sparsity can be handled by state-of-the-
art databases like MSSQL Server, as described by [HW15].

41

A Dynamic Product Line for an EHRMS Patrick Spitzer

Because of its advantages for a flexible solution and the manageable disadvantages
the shared database, shared schema approach is used. It is also the most appropriate
for a multi-tenant SaaS application, as suggested by [CCW06], because of its ad-
vantages when handling large amounts of tenants with a small number of database
servers. The impact of this principle on all database tables is visualized in figure
5.10 where the column TenantID assigns the corresponding row to a tenant. Con-
sidering the already described data-model, this addition is appropriately integrated
as property of the AbstractEntity class.

Figure 5.10: Tables for the Shared Database, Shared Schema principle

To ensure security and performance, the Tenant View Filter pattern is proposed by
[CCW06]. It states that for every tenantID there should be a tenant filter, containing
a tenant dependent view for each table. Clients are only allowed to work with the
filtered data according to their tenant. This process is visualized in figure 5.11.
For the sake of simplicity, the client in the diagram directly communicates with the
transaction manager which is responsible for handling the database connections and
queries. Considering the initially described architecture, the client would have to
communicate with the REST WebAPI.

The process steps in the figure are described as follows:

1. Users perform a login at a certain tenant. The session of a user is always
bound to his corresponding tenant.

2. When a user sends a data query to the system, with the help of the client
interface, he hands over his tenantID to the application layer. User requests
without the tenantID are not possible anymore.

3. The application layer queries the tenant filters of the database, handing over
the tenantID.

42

A Dynamic Product Line for an EHRMS Patrick Spitzer

4. The database returns the corresponding table views, if they exists. If not, the
table views must be created. A view enables the transaction manager to filter
tables efficiently according to the tenantID.

5. In the next step the transaction manager sends the user query to the tenant
filtered data, which is a subset of the entire relational data.

6. The queried data gets returned from the SQL database to the application
layer.

7. The queried data gets returned from the application layer to the client.

Figure 5.11: Multi-tenancy integration with the Tenant View Filter pattern

Finally through this way of multi-tenant integration adding and removing tenants
are a matter of configuration for the product line owner, if the transaction context
can automate the view creation. However, since this is a common implementation
problem, it is supported in ORM frameworks like Microsoft EF (see [Bér16] for
further reading).

43

A Dynamic Product Line for an EHRMS Patrick Spitzer

5.7 Access Management

As already described in section 4.1.2 the access management is mandatory for all
products of the product line to prevent not allowed access to the system. This section
describes the initial design for the SPL access management. But since IT-security
is a very comprehensive topic, it is not covered completely in this thesis.

The requirements already identified two access restriction points, one concerning the
application layer, the other concerning the client layer. Hence, this subject is also
divided in two subsections.

5.7.1 Application Layer

The access restriction mechanisms for the application layer represent the crucial
part for the access management. They prevent not permitted access to the system,
even if a user would see not allowed functionality or would manually send a request
to the server.

The attributes of a user are bundled in an object called the user account, which con-
tains a userID as the unique identifier. For the authentication process, a user has to
provide his userID and a credential to the system. The credential provides evidence
for the users claimed identity, e.g. a password which is only known to the user and
the system. If userID and credential match together, the user is authenticated. A
security context or token can be bound to the users connection as evidence that the
user has already been authenticated. Otherwise a user would have to provide his
userID and credential for every request. [Tod07, pp. 4–5] [Ben06, pp. 3–4]

After the authentication, the requests of the user can be authorized. Authorization
can be defined per operation or resource that an interface offers and is often realized
via a role based access control model, as described by [Ame04]. This model is based
on on users, roles and permissions. A role is defined as “a job function within the
context of an organization with some associated semantics regarding the authority
and responsibility conferred on the user assigned to the role.” [Ame04, p. 2] A per-
mission allows a role to perform an operation or access a resource. As shown in
figure 5.12, users and roles have a many-to-many relationship, as well as roles and
permissions.

44

A Dynamic Product Line for an EHRMS Patrick Spitzer

Figure 5.12: Relationship between users, roles and permissions according to [Ame04]

Another level of authorization is the verification of the tenant rights. The tenant
rights are derived from the tenant configurations and mainly represent the chosen
variants of the tenant. For example, if a tenant chose only the Melanoma variant of
the variation point Enabled Medical Specialties, then all users of this tenant would
only be able to manage patients with a melanoma.

With the help of this model, the authentication and authorization process, visual-
ized in figure 5.13, for the SPL can be designed. The process is additionally based on
the security, authentication, and authorization documentation for ASP.NET Web
API, since this is a state-of-the-art framework. [Mice]

Figure 5.13: Authentication and authorization in the SPL

45

A Dynamic Product Line for an EHRMS Patrick Spitzer

The numbers in the figure represent the following steps:

1. At first the user hands over the userID, tenantID and credential, in this case
a password, to the Access Management Service of the Client. The Access
Management Service is responsible for handling all access management related
functionalities and data at the client. It is implemented in the Services section
of the EHR Client, since it is used by multiple user interfaces.

2. User data gets handed over to the WebAPI of the server.

3. The Authentication Controller of the WebAPI validates the data against a
User Repository. As stated in section 4.4, the user repository is a variation
point and hence different repositories must be supported. A strategy pattern
as variation mechanism is considered as appropriate, since this variation point
represents a family of related algorithms. [Gam+11, p. 315]

4. If the user is valid, the already described token or security context is returned.
Otherwise an appropriate exception must be sent back to the client.

5. Every subsequent request from the Client, has to contain the token, the ten-
ant, the WebAPI method, method parameters and, if the WebAPI method
is dependent on medical specialties, the concrete specialty is needed. With
this information, the questions from chapter 4.1.2 can be checked. At first the
token gets validated by a Authentication Filter to see if the request has been
made by a valid user.

6. The next filter that applies is the Authorization Filter. First, it checks whether
the user’s corresponding tenant has the rights to perform the method. This
is validated with the help of the tenant configuration. After that, the user’s
corresponding rights are checked with the help of the assigned roles. Both
filters are applied before every call of a WebAPI method and are therefore
suitable for an aspect-oriented design.

7. The method gets executed if authentication and authorization succeeds, oth-
erwise the user gets an appropriate exception gets created.

8. The result of the WebAPI method is returned to the client.

Already proposing concrete roles or even designing a user management system is
not part of this thesis anymore and is considered as future work.

46

A Dynamic Product Line for an EHRMS Patrick Spitzer

5.7.2 Client Layer

A second access restriction point was already mentioned in the requirements for
the access management (see chapter 4.1.2). As stated, this is necessary to hide
interfaces and functionality, which the user is not allowed to see. Additionally this
is important for the product derivation process, as the presented mechanisms result
in showing the users of a tenant the right interfaces for the corresponding product.

The initial authentication is realized with a login page on the client side, where the
user can type in his username and credential. Without a valid security context, the
user can’t get past this interface. As this is a common mechanism for authentication
and the communication between client and application layer was already described
in chapter 4.1.2, it is not further elaborated in this thesis. However, even if this
procedure is obvious, it is still mandatory and for a better understanding, the user
interface for the authentication is visualized in figure 5.14.

Figure 5.14: Login page for user authentication on the client

Subsequent user interfaces are filtered with an analogical principle like on the server.
This means elements of the user interface can be assigned with an authorization fil-
ter, like methods of the WebAPI, which authorizes according to user rights, tenant
rights and tenant membership. The authorization for tenant membership is addi-
tionally needed to realize tenant specific, respectively differing, UI elements. This
principle is visualized by means of two scenarios in figure 5.15. The scenarios both
show the same interface, where the user has to select a medical specialty for a new
patient. However, the interface has to adapt dynamically to tenant and user rights
since it is bound to the VP Enabled Medical Specialties. To be more precisely, the
buttons on the interface have to annotated with the client authorization filter, which
includes them dynamically.

47

A Dynamic Product Line for an EHRMS Patrick Spitzer

• Scenario 1: The tenant Cork Hospital has the right to manage patients of all
MS variants and so does the currently logged in user Joe Bloggs.

• Scenario 2: The tenant Dublin Hospital selected the MS variants Breast
Cancer, Thyroid Cancer and Uppergut Cancer. However, the currently logged
in user Jon Doe is only authorized to manage patients with breast and thyroid
cancer.

Figure 5.15: Adapting the user interface according to tenant and user configuration

For an efficient authorization process, the tenant and user rights must be saved
in the already introduced Access Management Service on the Client (see chapter
5.7). When a user successfully logs in to the system and gets a response from
the Authentication Controller, as shown in step 4 in figure 5.13, the controller has
to additionally send back the corresponding tenant and user rights. These rights
are saved in the Access Management Service, which exports an interface with the
following method for the UI elements authorization filter:

• isUserAllowed(neededTenantRights, neededUserRights, neededTenant
Membership): The first parameter hands over the tenant rights, which are
needed for viewing the UI element, while the second one concerns the needed

48

A Dynamic Product Line for an EHRMS Patrick Spitzer

user rights and the third the needed tenant membership. The needed rights
are compared to the provided rights from the Authentication Controller. As
already stated they are saved in the Access Management Service anyway and
don’t need to be passed as parameter. The method returns true if the user
provides the needed rights and membership, otherwise false is returned.

If the method returns false the client authorization filter has to take care of excluding
the UI elements. Producing a query to the application layer per authorized element
of the user interface would result in a great quantity of requests and possible poor
performance.

This design fundamentally enables authentication, and authorization via user spe-
cific interfaces on the client. However, a more detailed design of the Access Man-
agement Service and the authorization filter for UI-Elements is considered as future
work and is not part of the thesis anymore.

5.8 Multi-Language Support

The multi-language support is a common requirement, but the design has to con-
sider, that a tenant can configure the supported languages for his product. There-
fore, it is a matter of product line owner configuration to add, modify and remove
languages for the platform and a matter of tenant configuration to select the lan-
guages for a concrete product. The multi-language component is integrated in the
Technical Services section of the architecture, see figure 5.2.

A common way to structure and store translations are resource files. These files
include simple key-value pairs and a locale identifier in their filename. The key-
value pairs consist of a unique identifier for the translatable text across all files as
key and the corresponding translatable text as value. The locale identifier is an
easily identifiable language code, e.g. en for English or de for German, which can
vary dependent on the used technology. [Ess00, pp. 31–32]

Table 5.1 shows an example for two resource files for English and German and the
Microsoft .NET naming conventions and file types. Programming languages like
C# or Java are able to organize their files in a similar way and offer mechanisms to
read them at application run-time by simply stating the basic filename and a given
locale identifier. [Ora]; [Micd]

49

A Dynamic Product Line for an EHRMS Patrick Spitzer

Language: English German
File name: translations.en.resx translations.de.resx
Content: pOverview = "Patient

overview",

pOverview =

"Patientenübersicht",

login = "Login", login = "Anmelden",

logout = "Logout" logout = "Abmelden

Table 5.1: Resource files example

For the SPL exactly this principle is used for internationalization. For the resource
files, the naming convention is equivalent to the example: translations.«language
identifier».«file extension». Three design units have to be integrated into the
system for this concept:

• Multi-Language Service: Service for the client which saves the currently
selected translations, enabling views to query the key-value pairs efficiently.
Additionally it takes care on the client side, that a tenant can only select his
supported languages.

• Multi-Language Controller: Defines the interface for the Multi-Language
component on the REST WebAPI.

• Multi-Language Component: Is integrated in the Application Kernel and
contains the application logic and the resource files to ensure performance and
availability.

The interaction between these units is visualized in figure 5.16, where the numbers
represent the following process steps:

1. When a user opens the client, the Multi-Language Service sends a request to
the Multi-Language Controller handing over the tenantID as parameter.

2. The controller sends back the supported languages and the default language
for the current tenant, which is declared in the tenant configuration. The
Multi-Language Component is not queried, as no business logic is needed.

3. The Multi-Language Service sends a query to the Multi-Language Controller,
handing over a language identifier as parameter. The language is either se-

50

A Dynamic Product Line for an EHRMS Patrick Spitzer

lected by the user or the default language is used when the client is opened
for the first time.

4. The Multi-Language Controller passes the query to the Multi-Language Com-
ponent on the server.

5. TheMulti-Language Component loads the appropriate resource file and returns
it in a suitable data format, such as a dictionary.

6. The controller returns all translations for the selected languages to the Multi-
Language Service, where user interfaces can query single translations. Query-
ing the server for every single key-value translation pair is considered as bad
design, as it would result in a large amount of requests.

Figure 5.16: Multi-language support in the SPL

5.9 Product Line Testing

As described in chapter 3.1.2 and 3.1.3, testing is an integral part of SPLE. This
chapter should demonstrate the difficulties of testing in a SPL and especially show
a solution how to organize tests in a way that is sufficient for the requirements of a
DSPL and integrate them into the proposed architecture.

51

A Dynamic Product Line for an EHRMS Patrick Spitzer

The testing process of product lines differs from single application testing, as there
are multiple running applications which can be tested and variability mechanisms
have to be considered when designing the tests. The testing process of a DSPL
slightly simplifies the process, as it relies on derivation via configuration and run-
time mechanisms, instead of derivation via building independent products. Hence,
concrete products doesn’t have to be build before testing. However, it can become
more complex to structure the tests as everything is realized with one large platform.
As a result a categorization of tests according to multiple dimensions is proposed in
this chapter to easily structure and run tests. The following dimensions, each with
multiple categories, were identified:

• Variation Points: Since variability is ubiquitous in the SPL, it has to be
considered in the testing process that tests are responsible for certain variants.
Hence a variation point becomes a dimension for structuring tests, with its
corresponding variants as categories.

• Products: Tests have to assignable to concrete products, respectively tenants,
which form the categories of this dimension. Tenant specific parts should be
avoided in a DSPL but they are not prohibited. This is why they have to be
considered and testable.

• Testing Levels: Different testing levels, like system, integration or unit tests,
are also available in single application testing but are not less important for
DSPL testing.

A separation of tests on a per file basis would not be sufficient, since this would
mean that every test could be assigned to exactly one category. But a unit test
could belong to a specific variant, while also only being valid for selected tenants.
Simply agreeing to structure the tests according to one dimension would be a pos-
sible solution but this would restrict the test functionality extensively. For example
agreeing on structuring tests only according to their related tenant would mean that
tests for commonalities would have to be rewritten for every tenant.

To solve this problem an aspect-oriented approach is suitable, since it is a cross-
cutting concern. This means meta data must be added to every test, assigning them
to their respective test categories. The used test framework exploits this meta data
and makes it possible to filter and run tests according to their assigned categories.

52

A Dynamic Product Line for an EHRMS Patrick Spitzer

This approach is based on the concept of test categories from the Microsoft .NET
framework and due to that this framework is used to explain this principle further.
However, this concept is basically not programming language related and it is also
included in other frameworks like JUnit for Java. [Jun]; [Micc]

In C# a [TestCategory()] attribute is used to add this kind of meta-information
to methods or classes. The parameter of this attribute is the category, to which the
test belongs. This principle is shown in listing 5.2, where a unit test is additionally
assigned to the melanoma medical specialty and the concrete products for two hos-
pitals.

1 [TestMethod]
2 [TestCategory("UnitTest"), TestCategory("Melanoma"),

TestCategory("CorkHospital"), TestCategory("DublinHospital")]
3 public void GetMelanomaDataTest()
4 {
5 //Testimplementation
6 }

Listing 5.2: Implementation example of test categories

The integrated test framework can extract this meta data and let the product line
owner or build- and deployment-scripts filter and combine these categories, when
running the tests. As this is also already supported by the two mentioned technolo-
gies, this is not further designed in this thesis.

Since the number of tests can become large, the tests should be managed in a
separate project, which references the application layer. Tests for the SAGE-CARE
product line are therefore integrated in the SPL Tests project, as shown in figure
5.2.

5.10 Client Variability

When designing the product line, not only flexibility on the application and data
layer has to be considered, but also on the client. Concepts have to be made to
seamlessly integrate optional and differing requirements. The fundamental concept
of excluding UI elements per authorization filter was already described in chapter
5.7.2. However, in this chapter two concrete concepts are presented which show the
design of flexible and customized views for the EHRMS.

53

A Dynamic Product Line for an EHRMS Patrick Spitzer

5.10.1 Patient Records with User Interface Components

The requirements for this concept were already fundamentally described in chapter
4.1.4. As stated, the existing user interfaces for adding and editing patients should
be redesigned with the help of reusable user interface components (UIC) that are
aligned to the actual patient data and group related data or functionality. Every
MS and MIS in the product line is represented by at least one UIC, addressing the
variation points from chapter 4.2.1 and 4.2.2. Figure 5.17 shows the example of a
component, arranging the classification data for breast cancer.

Figure 5.17: Example UIC for breast cancer

These components are aligned vertically, to visualize the paper form of a patient
record. The UIC concept could be used for other use cases, like dynamically building
up patient overviews for group meetings of physicians, but it is initially designed for
adding and editing patients. The design provides the following functionalities for
meeting the requirements:

1. UIC can be classified according to three dimensions: common/optional, stat-
ic/dynamic and leaf/node. Common components are available for every prod-
uct, while optional components are linked to a variant. Static types have a
pre-defined place and are arranged at the top or the bottom of the page. While
dynamic components adapt themselves to the actual patient data and can be
added, moved and deleted by the user in a dynamic center section. The order
of the dynamic UIC is part of the tenant configuration, e.g. always show MS
first. Node components can be extended with other components while leafs
are not extendable.

2. The concept for navigation on the EHR is integrated into the existing sidebar
of the SAGE-CARE melanoma application EHR interface. Additionally, it

54

A Dynamic Product Line for an EHRMS Patrick Spitzer

provides functionality for managing the UIC.

3. Tenant specific fields are possible with the help of the access management
mechanisms from chapter 5.7.2.

An example of this concept is visualized in figure 5.18, where the EHR of two differ-
ent patients and products are shown. Product A shows a patient with breast cancer.
The Breast Cancer UIC contains other components, as this element is designed as a
node. These elements can be dynamically added and removed from the node. Apart
from that, only static UIC are shown, as dynamic components only show the actual
patient data. Product B shows another patient with a melanoma and additionally
with an enabled Drug Informations variant in the tenant configuration, which adds
the component for showing drug interactions.

Figure 5.18: User interface components concept overview

The functionality of adding, removing and moving dynamic components and the
navigation concept is grouped in a sidebar, instead of inserting them also in the
EHR form, which can become big as more components are added. This separates
the functionality for navigating and structuring the components (navigationbar)
from viewing and editing their data (EHR). The navigationbar represents the UIC
from the patient record as a label and consequently creates a summarized overview.

55

A Dynamic Product Line for an EHRMS Patrick Spitzer

For adding new components, an add button is displayed in the navigation bar. When
clicked, a dialog like illustrated in figure 6.5 is opened, showing the available dynamic
UIC for the current patient. Moving components is realized via drag’n’drop, which
is an easy and user friendly concept. Removing components is also possible via
drag’n’drop. The user is able to drag a component label from the sidebar into a
paste bin, which is a common concept and creates consistency with the drag’n’drop
mechanism for moving components. Normally patient data is not deleted in an
EHR. But as this concept gives the user the ability to build up patients freely, it has
to be considered that users make mistakes, which have to be reversible. This case
has not been further elaborated during this thesis as the main goal was to initially
create a free and flexible concept. The same applies to constraints for allowing only
specific leaf elements for certain nodes. However, two considerations were made:

• Give the user the freedom to remove every component he wants, since the
data historization ensures that data can’t be deleted completely anyway (see
chapter 5.5). Certainly, the UI must then provide a recovery functionality.

• Only newly added UIC are deletable. Already saved components can just be
modified or rearranged.

Figure 5.19: Prototype for the UIC navigationbar

A mapping of these changes to the server data model is already possible, since the
HL7 RIM is used, where new relations can be build up dynamically with association
objects. The user interaction model of the navigation bar and a drag’n’drop example
is visualized in figure 5.19. Simply clicking on the component label of the sidebar

56

A Dynamic Product Line for an EHRMS Patrick Spitzer

would focus the UIC on the EHR interface. A screenshot of the current prototype,
showing the sidebar and the EHR interface with the help of an example patient is
shown in appendix C.

The UIC framework is integrated completely in the client layer with the help of
two main view components and one service, belonging to the corresponding sections
shown in figure 5.2. The following units have to be considered

• PatientRecordView: Contains all independent UIC and the main patient
record view. The main patient record view is concerned with building up
the EHR form, with the help of UIC, according to the patient data and the
tenant and user rights, as shown in figure 5.18. The UIC are independent
view components, each with a view definition, e.g. an HTML file, and a data
definition, e.g. a JSON file. The data-definition is necessary, as adding an UIC
to the patient record view also means adding data to the patient data object.

• PatientRecordNavigationBar: The view for the described navigationbar for
the PatientRecordView, as shown in figure 5.19. It implements the drag and
drop and navigation functionality.

• PatientRecordService: Contains the patient data, communicates with the
server and exports an interface, that allows access to the data for the views.
This structure is equal to the observer pattern, like described by [Gam+11,
p. 293], and ensures that both views work with the same data. Additionally
it provides the data in a usable format for the views, since the data from the
application layer is not always appropriate for such a view, as shown in chapter
6.2.2.

For tenant specific fields, no new mechanisms are needed, as this was already covered
by the fundamental mechanisms of the client authorization with the validation for
tenant membership (see section 5.7.2). If tenants want a product specific field, it
must be added by the product line owner in the spreadsheet for the code-generator,
which enables the persistent storage of the data, and on the UIC component with the
authorization filter. This is sufficient as it is not expected that tenants want a large
variety of product dependent fields, since the UI itself already provides flexibility.

Querying the patient data on the application layer, is in the current system already
possible with the PatientController class at the REST WebAPI. This controller
exposes the patient resource for the client and is callable per HTTP. Momentarily

57

A Dynamic Product Line for an EHRMS Patrick Spitzer

this controller returns the complete patient data to the client, including all issues.
For the product line the URL is changed to "/patients/{id}/{issue}". The
placeholder {id} stands for the database id of the patient object, while the {issue}
defines which specialty of the patient should be returned. As already stated in
chapter 5.7.1, specialty dependent interfaces of the WebAPI must have a parameter
which determines the concrete medical specialty. Just returning all diseases of a
patient would not be sufficient anymore, since the access management must be able
to check if the currently logged in user is allowed to manage patients with the
corresponding disease.

5.10.2 Variable Attribute Fields

Variable attribute fields (VAF) extend the functionality of the previous designed
UIC. Per UIC an optional amount of fields are declared via the tenant configura-
tion. The user has the possibility to select the fields which should be shown on his
interface. Selected fields are saved per user in the corresponding user configuration.

This concept is useful to meet the needs of specific users, as medical data has a
comprehensive scope and multiple users from multiple departments have to work
on the same system. For example, the clerical staff of a hospital is more concerned
with administration related patient data and needs to add a health insurance policy
number to the patient’s personal data. Whereas a physician has no use of this
attribute field, but rather wants to see the height and weight as personal data of
the patient.

A prototype implementation of this concept is shown in figure 5.20. The top part
of the picture shows a simplified example of a personal patient data UIC, where all
optional fields are deselected. In the bottom right corner of the UIC a button gets
inserted which indicates that the tenant enabled VAF for this UIC. The bottom
section of the figure shows the dialog which is displayed when the button is clicked.
In the dialog the user can then select the VAF, that are displayed on the UIC. In this
particular example, the insurance policy number was selected and added to the UIC.
Additionally, this setting is saved in the user configuration and loaded whenever this
user opens a new EHR.

Three components have to be designed for the VAF:

• VAFButton: Encapsulates the button and its corresponding dialog, like shown

58

A Dynamic Product Line for an EHRMS Patrick Spitzer

in figure 5.20. This creates the possibility to reuse the button on every UIC.
This component is integrated in the View section of the Client.

• VAFDirective: The VAFDirective is responsible for annotating fields on the
UIC. The annotation links the field to a tenant. Since this annotation is only
providing functionality, it is integrated into the Service section of the Client.

• VAFService: Is responsible for providing the needed data for the VAFButton,
enabling and disabling fields and querying the user configuration. When a
UIC is instantiated, the VAFDirective sends its annotated optional fields with
their corresponding tenants to the VAFService. Having the optional fields, the
service queries the user configuration to declare fields as selected or deselected.
The optional fields for the current tenant and user can then be queried by
the VAFButton and shown at the selection dialog. If a field is selected at
the VAFButton dialog, the VAFService is queried to enable the field. It is
integrated into the Service section of the Client.

Figure 5.20: Prototype implementation for the VAF

59

A Dynamic Product Line for an EHRMS Patrick Spitzer

Chapter 6

Domain Realization

Only selected parts of the concept from chapter 5 were implemented during this
thesis. The implementation is using a fork of the existing SAGE-CARE melanoma
application and enhances it towards a SPL. The client is implemented as a web
application with the technologies HTML, CSS and JavaScript. Additionally the
frameworks AngularJS and Bootstrap are widely used. At the application layer
Microsoft .NET technologies and the programming language C# are used. Commu-
nication between EHR Client and REST WebAPI is realized via the HTTP protocol
and the Microsoft ASP.NET WebAPI, which results in a RESTful API design and
JSON as data exchange format. The used object-relational mapper (ORM) is En-
tity Framework (EF), which allows the easy utilization of a Microsoft SQL Server
(MSSQL) as data layer. The shown implementations in this chapter were done
without tenancy awareness and the configuration hierarchy as this is currently not
implemented in the SAGE-CARE application.

6.1 Generic Data Model

6.1.1 Application Layer and Database Implementation

As described in section 5.3 and shown in figure 5.4, a slightly modified but still com-
patible version of the HL7 RIM is used as the data model. The implementation is
based on the approach from [HW15] for managing EHR data in a flexible yet efficient
way and it is realized with the Code First approach of EF, which allows to describe a
data model by using C# classes and predefined conventions. Created entity classes

60

A Dynamic Product Line for an EHRMS Patrick Spitzer

are automatically mapped to the object-relational MSSQL database. The Act class
is shown in listing 6.1 as an implementation example of the HL7 RIM with EF. It
also already features the ActRelationshipList and ParticipationList classes,
which are further described in chapter 6.1.2. Nevertheless, they basically contain a
list of ActRelationship and Participation objects.

1 public partial class Act : AbstractEntity
2 {
3 [InverseProperty("Source")]
4 public ActRelationshipList OutboundRelationship {get; set;}
5

6 [InverseProperty("Target")]
7 public ActRelationshipList InboundRelationship {get; set;}
8

9 public ParticipationList Participation {get; set;}
10 }

Listing 6.1: Act Class

The corresponding association class for connecting two Act classes is shown in listing
6.2. The source code of the other HL7 RIM base and association classes are not fur-
ther shown in this thesis, since there are no differences regarding the implementation.

1 public partial class ActRelationship : AbstractEntity
2 {
3 public ActType SourceType { get; set; }
4 public ActType TargetType { get; set; }
5 public Act Source { get; set; }
6 public Act Target { get; set; }
7 }

Listing 6.2: ActRelationship Class

The relationship type, introduced in chapter 5.3 and called ActType in the listing,
is realized as an enumeration to ensure consistent and readable variable names for
the whole application. An enumeration was created for every base class and was
consequently called ActType, RoleType and EntityType.

Relationships to other entity classes must be realized through public properties,
otherwise EF will not map them to the database. On the relational database, these
relationships are automatically realized with foreign keys. A 1:n or n:m relationship
must be realized through public properties which implement the ICollection<T>
interface, which is used to define generic collections.

61

A Dynamic Product Line for an EHRMS Patrick Spitzer

Another important information for EF in this particular example is the pointer to
the inverse property, realized with the [InverseProperty("")] attribute. This is
mandatory because of the multiple relationships between Act and ActRelationship,
since this is an association class with one incoming and one outgoing relationship.
Otherwise EF would not be able to e.g. assign the OutboundRelationship property
to the Source property.

There are three strategies for mapping classes to relational databases: Table-Per-
Hierarchy, Table-Per-Type and Table-Per-Concrete Type. Table-Per-Hierarchy uses
one database table for a whole inheritance chain, for example a Role table. Inheriting
classes are also saved within this table, instead of an own table for e.g. a Patient.
An additional column is created per table, called the discriminator, which saves the
concrete type of a table entry. Since all other entities in the information system
will inherit from the HL7 RIM base classes, the Table-Per-Hierarchy strategy will
be used for efficient access to the inheriting classes without creating expensive joins.
[Kan15]; [HW15]

The result of this strategy and the automated mapping of relations via foreign keys
(Source_Id and Target_Id) are visualized as an example table for Act and ActRela-
tionship in figure 6.1. The example shows a mapping of a BreastCancerIssue and
a Medication object with an object of the appropriate association class.

Figure 6.1: Relational Database Tables for Act and ActRelationship

62

A Dynamic Product Line for an EHRMS Patrick Spitzer

6.1.2 Efficient Getter and Setter Methods for the Server

When it comes to the implementation, the generic and flexible approach of this
data model shows some drawbacks, which are illustrated in listing 6.3. This exam-
ple shows the difference between the access of related objects in a data model with
direct relationships and the SPL data model, with the help of the 1:n relationship
between a patient and its corresponding medications. The third way shows the us-
age of the already introduced getter and setter methods, designed in chapter 5.3.

1 ...
2 //Accessing the medications via a property
3 var medicationsObj = patient.Medications;
4

5 //Accessing the medications via association objects
6 var medications = patient.Participation.Where(p => p.ActType ==

ActType.MEDICATIONS).Select(p => p.Act).OfType<Medication>();
7

8 //Accessing the medications via the new getter and setter methods
9 var medications = patient.GetAll<Medication>(ActType.Medications);

10 ...

Listing 6.3: Resulting Navigation Method of HL7 RIM

The example indicates the following disadvantages of the implementation with as-
sociation objects:

• Inconvenient: Developers are used to navigate to related objects via properties
or via getter and setter methods. With association objects they always have to
filter the list for the right relationship type, then select the the right navigation
property and at last ensure type safety.

• Inefficient: To get access to a corresponding object, one always has to iterate
over the list of association objects.

• Error-prone: The statement is clearly oversized for a simple navigation, in-
volves several method invocations and checks for null pointers should normally
be included for a safe access.

Hence, the proposed efficient getter and setter methods are implemented, hiding the
complex association objects, creating a convenient and accustomed mechanism for
the developer and taking care of exception handling.

63

A Dynamic Product Line for an EHRMS Patrick Spitzer

As already mentioned, simply iterating over all existing association objects is inef-
ficient, as the number of association objects increases. Other classes than a simple
list implementation must be used by the methods. Instead of mapping the 1:n
relationships in the HL7 RIM data model with a default list implementation, a
BindingList1 is used. It provides a generic list implementation, which can be used
by EF because it implements the ICollection<T> interface, with the addition of
supporting data-binding mechanisms. These mechanisms are used for binding the
data to a MultiValueDictionary2, which allows efficient access to the values in the
list. In contrast to a normal dictionary implementation, the MultiValueDictionary
assigns multiple values to one unique key, which is therefore also capable of map-
ping the 1:n relationship. The relationship type, which was introduced in chapter 5.3
and represents the variable name in a concrete relationship, is used as a key, while
the values are references to the corresponding objects in the list. This creates the
possibility to navigate efficiently to related objects by there variable name, without
taking care of the association objects.

The interaction of these two classes is shown in listing 6.4, using the example of
a BindingList implementation for the Participation class. As the implementa-
tions for the other association objects are analogical, they are not further described
in this thesis. For realizing the data-binding between the list and the dictionary,
the ListChangedEvent method is called whenever changes occur, which is one of
the provided mechanisms. The ListChangedEventArgs e parameter delivers infor-
mations about the change type, e.g. if an item was added or modified, and provides
a reference to the changed object. Nevertheless the implementation of this method
must take care of updating the dictionaries with the corresponding Roles and Acts.

1 public class ParticipationList : BindingList<Participation>
2 {
3 public MultiValueDictionary<RoleType, Role> RolesDict { get;} = new

MultiValueDictionary<RoleType, Role>();
4 public MultiValueDictionary<ActType, Act> ActsDict { get;} = new

MultiValueDictionary<ActType, Act>();
5

6 private void ListChangedEvent(object sender, ListChangedEventArgs e)
7 {
8 switch (e.ListChangedType)
9 {

1https://msdn.microsoft.com/en-gb/library/ms132679(v=vs.110).aspx
2https://www.nuget.org/packages/Microsoft.Experimental.Collections

64

https://msdn.microsoft.com/en-gb/library/ms132679(v=vs.110).aspx
https://www.nuget.org/packages/Microsoft.Experimental.Collections

A Dynamic Product Line for an EHRMS Patrick Spitzer

10 case ListChangedType.ItemAdded:
11 //Add item to dictionary
12 break;
13 case ListChangedType.ItemDeleted:
14 //Delete item from dictionary
15 break;
16 }
17 }
18 }

Listing 6.4: Implementation of the ParticipationList class

As already stated in the design chapter, the getter and setter methods are im-
plemented in the HL7 base classes, since all other classes inherit from them and
are therefore capable of reusing the methods. How the methods interact with the
BindingList and the MultiValueDictionary is shown in listing 6.5. This listing
shows the example of the GetAll method in the Act class, which returns related
Roles for an Act by its associated RoleType. The usage of this method is illustrated
in the last statement of listing 6.3. The implementation of the other proposed meth-
ods for the Act class are shown in appendix D. Regarding the implementation for
the Role and Entitiy class, there is no distinctive feature. Consequently they are
not further shown in this thesis.

1 public partial class Act : AbstractEntity
2 {
3 public ParticipationList Participation {get; set;}
4

5 public IList<T> GetAll<T>(RoleType relationshipType) where T : Role
6 {
7 List<T> result = null;
8

9 if (Participation != null &&
Participation.RolesDict.ContainsKey(relationshipType))

10 {
11 var roles = Participation.RolesDict[relationshipType];
12 result = roles.OfType<T>().ToList();
13 }
14

15 return (result!=null && result.Count>0 ? result : null);
16 }
17 }

Listing 6.5: Implementation of Getter and Setter Methods

65

A Dynamic Product Line for an EHRMS Patrick Spitzer

The newly introduced methods indicate the following advantages and solve the prob-
lems described at the beginning of this chapter:

• Convenient: Even though C# developers are used to properties instead of
methods for object access, the usage of getter and setter methods is still a
common way of accessing and modifying objects.

• Efficient: The underlying dictionary structure allows efficient access via the
relationshiptype

• Centralized Exception Handling: The getter and setter methods take care of
exception handling instead of handing the responsibility to the developer at
every iteration over the association objects.

• Reduced complexity: While the advantages of the data model with decoupled
associations can still be exploited, the developer does not have to work directly
with it.

6.1.3 Client Implementation

As already stated, the client mainly uses the web technologies HTML, CSS and
Javascript and is loosely coupled to the server. Due to that, the getter and setter
methods from the server are not reusable on the client. When requesting the server,
the data is sent in the HL7 RIM structure. It is transformed by the Json.NET3

framework to the JavaScript Object Notation (JSON) for data transfer to the client.
This causes the same disadvantages to apply as in chapter 6.1.2. An example of a
server response is visualized on the left side of figure 6.3. Just using the data in
the HL7 RIM structure is again not a suitable approach. Because additionally
it has to be considered, that the client heavily relies on two way data binding
between the views and their corresponding models because of AngularJS, which is
why an efficient access to related objects is mandatory. As a result an approach was
developed, which is specifically customized for the requirements of a dynamically
typed script language.

This approach introduces a new client services, called HL7RelationshipService
and realized as angular factory4, which maps the server data model to the client

3http://www.newtonsoft.com/json
4https://docs.angularjs.org/guide/providers

66

http://www.newtonsoft.com/json
https://docs.angularjs.org/guide/providers

A Dynamic Product Line for an EHRMS Patrick Spitzer

data model, such as e.g. Microsoft Entity Framework takes care of mapping data
between the business logic and the database. The service processes incoming data
into a usable format for the client and translates it back into the server data model
when it is sent back. Main functionality is the deletion of association objects and
the adding of related objects as direct reference. This is simply possible because
JavaScript is dynamically typed and therefore the requirement of building up rela-
tionships dynamically between objects is already fulfilled by technology and doesn’t
need a generic approach like on statically typed languages. Hence, three views on
the data exist in the system: a relational view for the database, an object-oriented
view for the statically typed application kernel and an object-oriented view without
association objects for the dynamically typed client. An example for all three views
is shown in figure 6.2.

Figure 6.2: Three Different Views on the Data

This approach makes the introduction for getter and setter methods on the client
dispensable and creates the possibility for convenient, efficient and yet flexible client
development.

The HL7RelationshipService contains two important public methods for the data
mapping, removeHl7Relations(data) and insertHl7Relations(data). The first
method is called to modify the incoming HL7 RIM data. It iterates recursively

67

A Dynamic Product Line for an EHRMS Patrick Spitzer

over the variables of the data parameter and removes HL7 association objects. The
detection of HL7 association objects is done via their $type variable, which is cre-
ated automatically from ASP .NET WebAPI and contains the server data type
as value. The relationshiptypes of the association object get mapped to variable
names, as described in chapter 5.3. Additionally a new variable is added, called
$sourceAssociation. This is necessary to flag this object as a server object which
was initially connected via an association object. A transformation example is shown
in figure 6.3.

Figure 6.3: Hl7RelationshipService data mapping

When sending data back to the server, the insertHl7Relations(data) is called
once which reverses the changes from removeHl7Relations(data). It iterates
again recursively over the data parameter and whenever an object contains the
$sourceAssociation variable, it gets connected again via an association object to
its parent object. Consequently, after this method got invoked the data is in the
HL7 RIM structure again, which is processable for the server.

6.2 Designing Patient Records with User Inter-
face Components

The concept of using independent UIC for designing patient records was already
introduced in chapter 5.10.1. It was also already stated, that the user interacts
with two interfaces: a navigationbar for navigating and structuring the UIC and
the patient record for viewing and editing the patient data. The design chapter
identified three components: the patient record service, the patient record view
and the patient record navigationbar. These units were prototypically implemented

68

A Dynamic Product Line for an EHRMS Patrick Spitzer

and are described in the following chapters. During the implementation phase, the
tenant aware access management was not yet designed and hence is not considered
in these chapters. A consequence is that a user currently sees every possible variant,
every defined field and the complete patient data is retrieved from the server in the
prototype.

6.2.1 Patient Record Service

The patient record view service is responsible for being the subject in the ob-
server pattern, containing data processing methods that are needed for the re-
alization of this concept and configuring the UIC. It is implemented in the ser-
vice section of the client layer, see figure 5.2, as AngularJS factory in the file
patientRecordService.js.

In the current implementation the service queries the the patient object with all
its corresponding information from the application layer and provides it for the
observers. As described in chapter 5.3, the patient is one of the main objects of
the system, beside the issue classes. The data processing is needed to meet the
requirements of dynamic UIC that get arranged according to the patient data. Since
dynamic UIC can be leafs and nodes, the patient data, which is just a data object
with all corresponding additional objects like diseases or medications, needs to be
processed in a structure that is suitable for such a tree structure.

The basis for the service and the processing is the UIC configuration file, which is
implemented in a JSON file since this is natively supported format in JavaScript.
This file defines which UIC are implemented and configures all needed values for the
views. An extract of the currently implemented UICConfiguration.json, showing
the configuration for two components is shown in listing 6.6.

1 [
2 {
3 "serverDataType": "SAGE_CARE_Core.Data.Entities.BreastCancerIssue,

SAGE-CARE_Core",
4 "labelValue": "Breast Cancer",
5 "treeType": "NODE",
6 "htmlPath": "breastcancerissue/breastcancerissue.html",
7 "jsonPath": "breastcancerissue/breastcancerissue.json",
8 "propertyName": "BREASTCANCERISSUE",
9 "icon": "fa-plus-square"

69

A Dynamic Product Line for an EHRMS Patrick Spitzer

10 },
11 {
12 "serverDataType": "SAGE_CARE_Core.Data.Entities.Medication,

SAGE-CARE_Core",
13 "labelValue": "Medication",
14 "treeType": "LEAF",
15 "htmlPath": "medication/medication.html",
16 "jsonPath": "medication/medication.json",
17 "propertyName": "MEDICATION",
18 "icon": "fa-medkit"
19 }
20]

Listing 6.6: Configuration of the UIC

Every UIC is represented as JSON object in an array, with the following properties:

• serverDataType: The corresponding server data type, which contains the
data for this UIC.

• labelValue: Value for the navigationbar label and the heading for the UIC
on the patient record.

• treeType: Determines if the UIC is a leaf or a node element.

• htmlPath: Path to the html file which defines the UIC view.

• jsonPath: Path to the html file which defines the UIC data model.

• propertyName: Name of the variable in which the corresponding data was
saved.

• icon: Unique identifier for the icon that is presented for the UIC on the
user interface. Currently the implementation uses the Font-Awesome icon
collection5.

The dynamic UIC must be sortable for the tenant, mappable to a tree structure to
represent nodes and leaf components and rearrangeable by the user. Consequently
a normal object received by the server, such as the patient object shown in figure
6.3, can not be used as object for data-binding. On the one hand the variables of
JavaScript objects are not sortable. On the other hand for realizing the dynamic
view with AngularJS, the ngRepeat6 directive and the angular-drag-and-drop-lists7

5https://github.com/FortAwesome/Font-Awesome
6https://docs.angularjs.org/api/ng/directive/ngRepeat
7https://marceljuenemann.github.io/angular-drag-and-drop-lists/demo/#/nested

70

https://github.com/FortAwesome/Font-Awesome
https://docs.angularjs.org/api/ng/directive/ngRepeat
https://marceljuenemann.github.io/angular-drag-and-drop-lists/demo/#/nested

A Dynamic Product Line for an EHRMS Patrick Spitzer

framework are needed, which use an array as input parameter for instantiating an
HTML template once per item.

The method createPatientTreeModel(patient) of this service is responsible for
the data processing, producing a suitable data model for the view components. This
data model is from now on called tree data model and is basically a representation
of the relevant variables from the patient data object as an array, enriched with
information of the UIC configuration. The method takes the complete patient data
object as parameter and recursively iterates over all its variables, searching for sup-
ported UIC datatypes in the $type variable of related objects. This means that UIC
are bound to concrete server data types in this implementation, as already shown
in the service configuration (listing 6.6). If an object with a supported data type is
found, it is added to the array of the tree data model including its corresponding
settings of the UIC configuration. These settings are added to realize a generic and
efficient way to include the UIC on the interface.

The resulting data model fulfills the requirements for the used technologies and
represents the arrangement of the UIC on the user interface. The following sections
6.2.2 and 6.2.3 give further explanations on why this data processing is needed and
how the data model is used in the views.

A simplified example for the data processing is shown in figure 6.4 for a patient
with breast cancer and one medication. The method creates an object with an
items variable, which contains all variables of the main patient object that are sup-
ported for an UIC including its settings from the configuration. In the example it
is the BreastCancerIssue object from the Patient. The method also recursively
searches in objects with a supported datatype for more supported objects. This
means that the method iterates over the variables of the BreastCancerIssue ob-
ject and adds the Medication and Comment object to a new items array.

71

A Dynamic Product Line for an EHRMS Patrick Spitzer

Figure 6.4: Mapping between a patient object and its tree data model

6.2.2 Patient Record View Component

As stated previously the patient record component shows the patient data with the
help of UIC and is integrated into the view section of the client, see figure 5.2. The
patient record component consists out of three main files and multiple sub folders:

• patientRecordDirective.js: AngularJS directive8 for reuse purposes. En-
ables to reuse the patient record component in every HTML file, just by typing
<patient-record-directive> </patient-record-directive>. This is im-
portant for reusing the component on the interfaces for adding and editing a
patient, which slightly differ. As this is a standard AngularJS approach, it is
not further explained in this thesis.

• patientRecordView.html: HTML file for recursively loading the UIC.

• patientRecordController.js: Client logic for the patient record user inter-
face. Since most of the view logic is covered by the patient record service and
the patientRecordView.html, this controller is not further described.

8https://docs.angularjs.org/guide/directive

72

https://docs.angularjs.org/guide/directive

A Dynamic Product Line for an EHRMS Patrick Spitzer

• UIC subfolders: Every UIC gets its own folder, containing an HTML file for
its view structure and a JSON file for its data structure, as already shown in
the configuration example in listing 6.6.

The patientRecordView.html file makes use of the ngRepeat directive and the pre-
viously introduced tree data model from the patientRecordViewService, as shown
in listing 6.7. An iteration over the patient data object with ngRepeat would techni-
cally not be possible, as it needs an array. At first the static UIC get included, repre-
sented by a personal data UIC in the example. This is done with the help of the path
to its HTML file. Afterwards the ngRepeat iterates over the root items array in the
tree data model and includes the script with the id patientRecordViewRecursion.
This script loads the HTML with the path that is saved in the htmlPath variable.
Finally, if the object has child objects as well in his own items variable, the script
gets included recursively. With the data from figure 6.4 the HTML code would
generate a patient record view interface like shown in appendix C.

1 <div class="container">
2
3 <uib-accordion close-others="false">
4 <!-- Static UIC -->
5
6 <div id="personaldata"

ng-include="’app/components/patientRecordView/UIC/personaldata
/personaldata.html’"> </div>

7
8 <!-- Dynamic UIC -->
9 <li ng-repeat="childItem in vm.treeDataModel.items"

ng-include="’patientRecordViewRecursion’">
10 </uib-accordion>
11
12 </div>
13

14 <script type="text/ng-template" id="patientRecordViewRecursion">
15 <uib-accordion-group is-open="true"

ng-attr-id="{{childItem.propertyName +
childItem.propertyValue.Id}}">

16 <div ng-include="’app/components/patientRecordView/UIC/’ +
childItem.htmlPath"></div>

17 <ul ng-if="childItem.items.length > 0">
18 <uib-accordion close-others="false">
19 <li ng-repeat="childItem in childItem.items"

ng-include="’categoryTree’">

73

A Dynamic Product Line for an EHRMS Patrick Spitzer

20 </uib-accordion>
21
22 </uib-accordion-group>
23 </script>

Listing 6.7: Code of patientRecordView.html

6.2.3 Patient Record Navigationbar

The patient navigation and drag and drop functionality is currently integrated in the
existing sidebar of the SAGE-CARE melanoma application. The assembly of UIC
labels is done in a similar way as in the patientRecordView.html with the help of
ngRepeat and the tree data model from the patientRecordViewService. Except
that it doesn’t include the UIC HTML saved in the htmlPath, but only shows the
contents of the labelValue and icon property. Prototypes of the navigationbar
were already shown in figure 5.19 and appendix C.

The drag and drop functionality is implemented with the help of the angular-drag-
and-drop-lists framework, providing an angular directive for modifying ngRepeat
lists with the HTML5 drag and drop API9. It instantiates all items from the tree
data model as draggable elements. If UIC are declared as nodes with their treeType
setting in the UIC configuration, the drag and drop framework declares them as
container. This means that they are able to include further drag and drop elements.

As the navigationbar and the patient record view both use the same tree model data
object from the patient record service, with the help of the observer pattern and
angular data-binding, they are always synchronized. As a result, if the user moves a
UIC label on the navigationbar, the patient record view gets updated automatically.

The current implementation only offers the ability to add new UIC to the patient via
a button on the navigationbar, whereas the delete functionality is currently not de-
signed (see chapter 5.10.1). The add button opens a new dialog with the help of the
angular-dialog-service framework10. The dialog reads the UICConfiguration.json
and offers the user a button per supported UIC, as shown in figure 6.5. If the
user adds an element, an object gets created with the corresponding data model,
deposited in the JSON file of the jsonPath setting. This object gets appended to
the currently used patient data object, and as a result the tree data model and the

9https://www.w3.org/TR/html/editing.html#drag-and-drop
10https://github.com/m-e-conroy/angular-dialog-service

74

https://www.w3.org/TR/html/editing.html#drag-and-drop
https://github.com/m-e-conroy/angular-dialog-service

A Dynamic Product Line for an EHRMS Patrick Spitzer

dependent views are updated with the new UIC.

Figure 6.5: Adding new UICs to a patient record

75

A Dynamic Product Line for an EHRMS Patrick Spitzer

Chapter 7

Evaluation

As this thesis creates the initial concept for the SAGE-CARE SPL, it is important
to consider the defined requirements, but also evaluate with more universal require-
ments from the literature. Consequently two evaluations were made. Chapter 7.1
uses the Family Evaluation Framework (FEF) to determine if universal needs for
product lines were addressed. Whereas chapter 7.2 evaluates the specific require-
ments for this SPL, at first defined in chapter 2.

7.1 Family Evaluation Framework

7.1.1 Overview

The FEF is a result of the European ESAPS and CAFÉ projects and aims to evaluate
organizations according to their performance in SPLE. Academic institutions, as
well as companies from different European countries, like Siemens, Bosch or Philips,
worked together in these projects on multiple research topics concerning SPLs (see
[van02] for further reading).

Evaluation within the framework is done according to four dimensions: business,
architecture, process and organization. Each dimension is then divided into five
levels with three to four evaluation aspects. The levels can be reached incrementally.
That means if a company wants to reach a certain level, it has to satisfy all of the
requirements from the lower levels. The result of the FEF is an evaluation profile,
which declares a level for each evaluation aspect.

76

A Dynamic Product Line for an EHRMS Patrick Spitzer

The dimensions are rated independently. As a result, a company can for instance
reach level five in the architecture dimension, but level one in the organization
dimension. Similar to other level based evaluation systems, like Capability Maturity
Model Integration (CMMI), the FEF doesn’t require specific practices to reach a
level, but focuses on certain objectives that need to be achieved. [LSR07, pp. 79–82]

As this thesis is only concerned with the architecture of a SPL, the dimensions busi-
ness, process and organization are left out, since the aspects couldn’t be evaluated.
However, the architecture dimension is evaluated with the help of the designed con-
cept and prototype implementation, according to the asset reuse level, the reference
architecture and the variability management. [LSR07, p. 86]

7.1.2 Execution

The execution of the evaluation is based on the performed example from [LSR07,
pp. 100–104]. For each evaluation aspect the level definitions are quoted, followed
by a level classification for the SAGE-CARE SPL.

Asset Reuse Level

This aspect intends to consider the usage extent of core assets in products. The
levels are defined as follows:

• Level 1: There is no or only unsystematic reuse.

• Level 2: There is a common third-party infrastructure defined and in use.
There is only ad hoc reuse, mainly based on the repository of the third-party
products.

• Level 3: There is a common platform defined as a collection of common assets
in a domain repository. Reuse is restricted to this platform, and it is restricted
by architectural constraints.

• Level 4: There is systematic and managed reuse based on an asset repository,
with explicit variability in the assets.

• Level 5: There is systematic reuse based on an asset repository, with explicit
variability in the assets plus automated product derivation mechanisms.

77

A Dynamic Product Line for an EHRMS Patrick Spitzer

As this product line is designed as DSPL, all products are based on the same config-
urable platform, reusing the same assets. The architecture and product derivation
of the SAGE-CARE SPL heavily relies on reuse, since differing features are rarely
needed and are currently all solved by configuration, e.g. variable attribute fields
(see chapter 5.10.2). Variability is explicitly defined in the assets, e.g. in access
management (see chapter 5.7.1) or multi language support (see chapter 5.8). Prod-
uct derivation is done via configuration, as outlined in section 4.1.5. The FEF does
not define the term “automated product derivation mechanisms” of level 5. Albeit,
configuration of the SPL has to be done manually and must be aligned to the vari-
ability model, which is the reason that level 5 is not reached. Subsequently, the SPL
reaches level 4 for the asset reuse level.

Reference Architecture

The purpose of this aspect is to ascertain how much the application architecture is
determined by the reference architecture. Ensuing levels are stated:

• Level 1: There is no software product line architecture.

• Level 2: The software product line architecture is derived from the third-party
infrastructure. It only enforces the use of this infrastructure.

• Level 3: It is in use for the applications. It contains rules and determines
the use of the platform. This incorporates the common use of certain quality
solutions as offered by the reference architecture.

• Level 4: There is an explicit reference architecture that determines where
application architectures may vary. Many quality solutions are incorporated
in the software product line architecture.

• Level 5: It determines the application architectures completely. There is au-
tomated configuration support to derive specific applications. Quality is sup-
ported through the managed use of specific variation points.

The reference architecture from chapter 5.2 defines the architecture for every con-
crete product of the SPL. The derivation via configuration is a fundamental principal
of a DSPL and thus also of the SAGE-CARE SPL (see chapter 4.1.5). Yet again,
there is neither an automated configuration support nor a self-service for customers
designed, as the SPL is not yet planned for a large amount of customers and the

78

A Dynamic Product Line for an EHRMS Patrick Spitzer

configuration effort per product is manageable. Therefore only the criteria for level
4 is reached.

Variability Management

With this point of view, the explicit use of variation points and variability mecha-
nisms should be examined. The following levels are defined:

• Level 1: Variability is not managed.

• Level 2: Only variability offered by the third-party infrastructure is somewhat
limited. The remainder of the variation is open to be determined by the
application architecture.

• Level 3: The reference architecture determines which configurations of domain
assets are allowed within applications. It determines explicit variation points,
where application-specific variants may be bound.

• Level 4: The software product line architecture determines which configu-
rations are allowed for application architectures. The reference architecture
determines variation points and restricts the allowed variants for most of these
variation points. It determines rules that application-specific variants have to
obey.

• Level 5: It is fully integrated in the architecture. Variability is described
in models or languages that are semantically and syntactically standardized
within the organization. Variants are derived automatically.

The variability in the designed SPL is fully integrated into the domain architecture,
as specific application architectures do not exist, see chapter 5.2. The domain ar-
chitecture constraints the variants of concrete applications and determines the rules
for the products. However, the OVM and textual descriptions were used in chapter
4. Consequently, an automatic derivation of variants is not possible and level 4 is
reached for variability management.

7.1.3 Summary

As the SAGE-CARE SPL reaches level 4 for every evaluation aspect, the architecture
dimension is also assessed with level 4. This level is rated as follows: “At this level,

79

A Dynamic Product Line for an EHRMS Patrick Spitzer

the domain commonality and variability is captured and a reference architecture is
specified for the complete software product line. Domain assets include support for
deriving products. Variability management is explicitly addressed in the software
product line architecture”. [LSR07, p. 88]

According to the FEF, primarily the automation for deriving products is in need for
improvement for this design. Although, as already stated, the framework doesn’t
give an explicit example or definition of the automation. It is assumed that a
product derivation via a self-service for the customer can be seen as a fully automated
derivation process, as the product line owner wouldn’t have to interact in any way.

7.2 Requirements Evaluation

This chapter evaluates the outlined DSPL by comparing concept and prototype
implementation with the requirements defined in Chapter 2.

Requirement 1: This requirement states that an architecture of a software prod-
uct line for an EHRMS in cancer care shall be outlined. The proposed architecture
in chapter 5.2 is structured in three layers, which are loosely coupled and can be
distributed. The design considers the currently examined common and variable re-
quirements. Concepts and prototypes could be allocated to the various layers and
sections of the architecture. Currently it is also already possible to deploy a config-
ured application to a local Microsoft IIS server and to the Microsoft Azure cloud. As
the SPL is not designed for the mass market, a concept for extensive load balancing
was not designed initially. However, requirement 1 is met with the architecture.

Requirements 2 and 3: The derivation of products via configuration and the
multiple configuration levels were further described in chapter 4.1.5 and always
considered in the multiple designs of chapter 5. The main variation points, medical
specialties, medical information services and technical services, were also further
described and considered. However, no concrete concept for the configuration was
made during this thesis, even though the requirements were further examined and a
basic outline was made. As a result, the requirements 2 and 3 are not met completely.

80

A Dynamic Product Line for an EHRMS Patrick Spitzer

Requirement 4: The multi-tenancy data architecture from chapter 5.6 creates the
foundation in the data layer. Regarding the application and the client layer, multi-
tenant awareness is integrated into the access management as described in chapter
5.7. All things considered, the concepts describe how the interface is customized
according to the tenant of the user, how not permitted access to the application
layer is prevented and how data is seperated between tenants. Users are always
assigned to a specific tenant and cannot see or access data and features of other
tenants. Consequently requirement 4 is seen as fulfilled.

Requirement 5: With the presented access management mechanisms in chapter
5.7, fundamental designs for authentication and authorization were made. Users
have their own account, linked to a tenant, multiple roles and multiple rights. The
access management provides role and tenant based mechanisms for the authorization
on the WebAPI and the client. For this reason, fundamental security mechanisms,
described in requirement 5 are met.

Requirement 6: With the introduced historization component it is possible to
track all changes, i.e. create, update and delete operations, that were made by
users to the SQL database. Every change can be traced back to a user and its
corresponding tenant. The ability to track delete operations and historize the values
of the objects, ensures that data can’t be deleted completely and is recoverable if
needed. Due to this, the requirement is fulfilled with the presented concept in
chapter 5.5.

Requirement 7: As stated in the requirements, the main problem for product line
testing is the handling of multiple variants, products and additionally linking them
to testing levels. The introduced concept of test categories allows the developer to
classify tests simultaneously to multiple categories of the three main dimensions.
There are also no restrictions, concerning the categories or dimensions, which makes
the concept extensible. The used Microsoft .NET testing framework from the ex-
isting implementation exploits the categories and permits the execution of all tests
from specific categories. However, as stated in the design chapter, this functionality
is also integrated in other testing frameworks. As the DSPL integrates all products
into the domain architecture, the tests are implemented in an isolated project. Thus,
separating the concerns and ensuring a better manageability of the tests. All things

81

A Dynamic Product Line for an EHRMS Patrick Spitzer

considered, the presented concept conforms the requirements.

Requirement 8: As already evaluated by [HW15], the code generation frame-
work enables that new entities and attributes may be added easily by editing the
introduced spreadsheet. Additionally the generation ensures up-to-date classes and
the ORM assures up-to-date database tables. The newly implemented association
classes also enable that relationships between objects can be build up and changed
at run-time. This creates possibilities like in dynamically typed programming lan-
guages while still ensuring type-safety. Consequently, the data model can bee seen
as flexible and extensible.

Getter and setter methods are an established concept and create an accustomed way
for developers to work with the data model without using the association classes.
Furthermore, they are combined with a dictionary structure to ensure efficiency.
Tests of all methods revealed, that the response time doesn’t rise above 1 ms no
matter how large the association lists are. This is due to the fact, that accessing
dictionaries can be done with O(1) complexity. The only method depending on
the size of the list is the second call of the set method with the same relationship
type, as it first has to delete the old entry in the list to ensure that the variable is
only added once to the association list. However, the first response times that were
greater than 1 ms occurred at 10000 and more items in the corresponding list, which
is already an unlikely use case scenario. As a result, also convenience and efficiency
is reached with the concept and the requirement is met.

Requirement 9: The introduced patient records with UIC extend the flexibility
of the old static interface, as it allows an adaption of the interface to the actual
patient data. Additionally, new UIC can be added and rearranged by the user to
give them the possibility to create individual patient records and meet the demands
of the tenant. The components can be extended with tenant dependent fields and
even meet the needs of users with the introduced VAF. They are reusable for multiple
interfaces by including them, as they are encapsulated in their own files. Currently
they are already reused for the interfaces for adding and editing patients. Due to
this, the initially defined requirement is fulfilled, as they are flexible, reusable and
arrangeable by the user.

82

A Dynamic Product Line for an EHRMS Patrick Spitzer

Chapter 8

Related Work

As already mentioned in chapter 3.1.5 and 3.2 neither the combination of DSPL
with reconfigurable multi-tenant aware SaaS applications, nor EHR applications are
new research fields. However, to the best of my knowledge, no publication describes
the combination of an EHRMS with a DSPL. Most of the examined publications
were either concerned with designing a single EHR application or about security of
EHRs in the Cloud.

The paper from [BM13] outlines a cloud-based approach for the design of an inter-
operable EHRMS. Similar to this thesis they describe the architecture for an EHRMS,
but with the explicit focus on semantic interoperability, data integration, and se-
curity. Albeit, the paper focuses on single-system engineering instead of creating a
product line.

In the publications of [LSW10], [CA13] and [KS11], security structures are exam-
ined for patient records on cloud systems. Especially the first publication also gives
insight on client platform security, by virtually dividing an application in so called
trusted virtual domains. This means that a client platform provides different func-
tionalities, which are virtually separated to prevent not permitted access.

Another publication from [Kuo11] summarizes the general opportunities and chal-
lenges of cloud computing to improve health care services, to benefit health care
research and to change the face of health information technology. All in all, the
author discusses the aspects shown in table 8.1.

83

A Dynamic Product Line for an EHRMS Patrick Spitzer

Aspects: Opportunities: Challenges:
Management: Lower cost of new IT infrastructure Lack of trust by health care professionals

Computing resources available on demand Organizational inertia
Payment of use on a short-term basis as needed Loss of governance

Uncertain provider’s compliance
Technology: Reduction of IT maintenance burdens Resource exhaustion issues

Scalability and flexibility of infrastructure Unpredictable performance
Advantage for green computing Data lock-in

Data transfer bottlenecks
Bugs in large-scale distributed cloud sys-
tems

Security: More resources available for data protection Separation failure
Replication of data in multiple locations in-
creasing data security

Public management interface issues

Dynamically scaled defensive resources
strengthening resilience

Poor encryption key management

Privilege abuse
Legal: Provider’s commitments to protect customer’s

data and privacy
Data jurisdiction issues

Development of guidelines and technologies to
enable the construction of trusted platforms by
not-for-profit organizations

Privacy issues

Fostering of regulations by government for
data and privacy protection

Table 8.1: Opportunities and challenges of cloud computing to improve health care
services according to [Kuo11]

The SPLiCE (Software Product Line for healthCarE) project aims to propose a
model-driven engineering method for healthcare information systems. A SPL shall
thereby be created, which integrates clinical data models, described according to
the “openEHR” specifications, and architecture models, specified in the “Acme”
architecture description language. [Gom+12]

84

A Dynamic Product Line for an EHRMS Patrick Spitzer

Chapter 9

Conclusion and Future Work

9.1 Conclusion

In this thesis, a a multi-tenant aware dynamic software product line for an electronic
health record management system in cancer care was proposed, aiming to fulfill the
needs for the product line owner, the customers and the users. Focus of this thesis
was on identifying the common and variable requirements, designing the fundamen-
tal architecture and examining selected parts of the system. While other parts that
were already described in publications, were left out. The structure of this thesis
was aligned on the domain engineering process for SPLs, described in chapter 3.1.2.
Considering the basic input for the product line, three existing applications were
regarded. Two of them are currently in use at hospitals, developed and marketed
by NSilico. The third, which created the architectural foundation for the SPL, was
developed during the SAGE-CARE project.

With the help of this input, the common and variable requirements were exam-
ined during the domain requirements engineering process, described in chapter 4. It
was ascertained, that the variation points currently can be divided into three main
categories: technical services, medical specialties and medical information services.
Another important part was the common requirement for a configuration hierarchy,
that considers the product line owner, the tenant and the user. Chapter 5 dealt
with the design of the domain. The architecture itself was designed to be capa-
ble of running on a cloud system, deriving instances per configuration and meeting
the common and variable requirements. Focus of the design chapter was also on
integrating the mandatory variants into the architecture. Although the access man-

85

A Dynamic Product Line for an EHRMS Patrick Spitzer

agement and the configuration management both need more research, since these
are comprehensive topics and hence they were not examined in detail. Designs for
MISs were left out since they were already described by [Ide16]. However, concepts
for showing the MSs and MISs to the user were addressed in chapter 5.10. The
prototype implementation for two of the designs were shown in chapter 6. Imple-
menting the HL7 RIM data model and combining it with efficient getter and setter
methods helped to improve the flexibility of the data layer and created a foundation
for persisting comprehensive medical data. Realizing a first prototype of the UIC
provided variability for the client, creating a clear user interface while still beeing
able to handle the various constellations of variants. Evaluating the work of this
thesis in chapter 7 revealed that the approach followed universal requirements for
a SPL, shown with the help of the FEF. Yet the requirements evaluation showed
that there is still a need for a more comprehensive configuration framework, like
demonstrated in the corresponding chapter, whereas the other requirements were
met.

Supporting physicians with information technology offers a great potential for the
optimization of clinical processes. An EHRMS that includes the functionality of
MISs may help to reduce error rates, to increase performance of consultants and to
improve the clinical outcome. Additionally, creating the system as a DSPL and em-
phasizing flexibility helps to overcome possible barriers when introducing a EHRMS
in a hospital. The cloud-ready architecture creates the opportunity for an easy ac-
cess to the system without buying and setting up a technical infrastructure in a
hospital. Nevertheless, if it is needed because of data security, it is still possible
to deploy the application to a private application server. The DSPL also allows
flexible pricing models. Hospitals can start with a single specialty for a department
to either test the system, or to realize a phased adoption. They also don’t need to
pay and operate an extensive and monolithic system, but rather get a customized
application for their needs.

All in all, a SPL can be an extensive system, especially combined with the complex
health care domain. Consequently, only the fundamental work was done in this
thesis and there is still future work left.

86

A Dynamic Product Line for an EHRMS Patrick Spitzer

9.2 Future Work

It is currently planned to integrate more MSs, MISs and technical services into the
product line and hand it over to NSilico Lifescience Ltd. who will promote it as a
commercial product. For this purpose at least the additional work described in this
chapter is required.

9.2.1 Configuration

The configuration of the product line was initially described and outlined. Nev-
ertheless, no concrete design was made for the multiple configuration levels. It is
assumed that the product line owner and the tenant configuration will be spread
over multiple files on the system, instead of having one file per tenant and product
line owner. The same applies to the user configuration, which currently only covers
the VAF. However, while the tenant configuration can be made manually together
with the product line owner, a user configuration should be created automatically
and be changed via the user interface as the amount of users can become large.
Obviously also the tenant configuration could be realized with a self-service portal.
But as the SPL is initially not designed for the mass market, a configuration with
the product line owner is already seen as sufficient.

Presently there is also no design for hierarchical or linked tenants. For example if a
hospital group is made up of five hospitals and each hospital shall have a separate
tenant but the same tenant configuration. This would result in generating five
independent tenant configurations instead of creating one configuration and linking
the various tenants to it. It has to be further examined if this is a feasible approach
or if the more simpler approach from this thesis is preferable.

Besides the technical design for the configurations itself, a concept for corporate
identity should be made. This leaves tenants the possibility to at least integrate
their own logos and colors and gives users the look and feel of a truly customized
application.

87

A Dynamic Product Line for an EHRMS Patrick Spitzer

9.2.2 Security

Currently only the fundamentals for the access management are designed. This is
helpful, since the access management is mandatory for an EHRMS and has influence
on many other designs. However, since the topic is very comprehensive, future work
has to be done.

Currently no concrete concept for configurable roles and users is presented. To meet
the requirements of every customer, a configurable access management should be
introduced. This means that tenant and user rights are modeled in a sophisticated
access management system, where users, roles and permissions are defined. Those
definitions belong to the tenant configuration and can be used by the SPL.

Another important topic is the focus on secure communication and encryption. On
the one hand, an introduction of the Transport Layer Security (TLS) protocol for
the communication between server and client would secure the data transfer. On
the other hand, if performance is not influenced to badly, an encryption of sensible
patient data in the cloud could be contemplated.

In addition to the historization, the current SAGE-CARE Melanoma application
provides a basic auditing functionality. The auditing is currently just logging the
execution of a REST WebAPI method. A preparation for the product line should
be considered as this is a useful feature, when being well integrated with the access
management. In other words, this feature should log user and tenant data of method
calls and provide an alert system if not permitted access was detected.

Legal standards are an additional issue that was not addressed in this thesis and
should be examined when the product line is sold commercially.

9.2.3 Client Flexibility

The current UIC implementation for showing EHRs is only a first prototype, which
shows the general user interaction model. Access management needs to be inte-
grated to make tenant aware user interfaces. There is also a need for a better
WebAPI interface implementation for querying the EHR data. Currently the whole
patient is transferred to the client. Regarding the access management, this is not a
recommended behavior, since a consultant can be assigned to one specific MS, which
gives him only the rights to manage patients with this specific disease. Accordingly

88

A Dynamic Product Line for an EHRMS Patrick Spitzer

the interface needs to return the patient with just one specific issue and only if the
role of the user provides the corresponding permissions. If a finer grained access
management is needed, it is additionally recommended to split up the patient data
query into multiple requests. This means that only the fundamental patient data is
loaded at first and the remaining data is lazily loaded, while the access management
on the server decides if the user provides the appropriate permissions.

As stated in chapter 5.10.1, there is currently no concrete concept for deleting cur-
rently added UIC again. The design presented two possible ways but did not elab-
orate it further. It is recommended that only unsaved changes should be deletable
to emphasize for the user that patient data should not be deletable at all. Although
in this product line data can not be deleted but only historized.

The VAF, represented in chapter 5.10.2, still need to be more thoroughly designed
and implemented. This is especially dependent on the concrete design of the user
configuration, which is is currently only available as a concept.

9.2.4 Additional Technical Services

Like described in chapter 4.2.3 additional technical services were initially identified
but not further elaborated during this thesis due to their priority. Especially a data-
integration and a backup service should be introduced when preparing the product
line for a commercial distribution. The data-integration should consider integrating
HL7 RIM or openEHR (see [Bea+08] for further reading) compliant data. Backup
services should be able to automatically save the current application data regularly
on a remote server to counteract data loss.

9.2.5 Miscellaneous

Internationalization was only covered in terms of multi-language support. An ex-
tension to cultural conventions, like differing measuring units or symbols, should be
considered. Additionally, only languages that are based on the Latin alphabet are
implemented. Other alphabets, e.g. the Chinese alphabet, introduce greater changes
and most likely need a reworked and more detailed concept.

The currently designed and implemented MISs in the SAGE-CARE Melanoma ap-
plication aren’t yet revised for the product line. For example the literature service,

89

A Dynamic Product Line for an EHRMS Patrick Spitzer

which searches relevant literature according to the patient’s data, needs a mapping
strategy for each specialty as they all have diverse classification data. Consequently
they need to add a MS parameter in their interface, which determines the selection
of the correct algorithm.

As this thesis was concerned with designing the system from a product line point of
view, profound SaaS topics like load balancing or scalability were left out. Moreover,
the requirements for a technical infrastructure were not further examined.

90

A Dynamic Product Line for an EHRMS Patrick Spitzer

Appendices

91

A Dynamic Product Line for an EHRMS Patrick Spitzer

Appendix A

HL7 Reference Information Model

92

A Dynamic Product Line for an EHRMS Patrick Spitzer

93

A Dynamic Product Line for an EHRMS Patrick Spitzer

Appendix B

Orthogonal Variability Model

The OVM is split up on two pages, because of its size. The second figure is the left
side of the total picture and shows the required variation point Enabled Technical
Services for the variant Technical Services.

94

A Dynamic Product Line for an EHRMS Patrick Spitzer

95

A Dynamic Product Line for an EHRMS Patrick Spitzer

96

A Dynamic Product Line for an EHRMS Patrick Spitzer

Appendix C

Add Patient User Interface

97

A Dynamic Product Line for an EHRMS Patrick Spitzer

Appendix D

Act Class Implementation

1 public partial class Act : AbstractEntity
2 {
3

4 private ActRelationshipList _OutboundRelationship;
5 private ActRelationshipList _InboundRelationship;
6 private ParticipationList _Participation;
7

8 [InverseProperty("Source")]
9 public virtual ActRelationshipList OutboundRelationship { get; set; }

10

11 [InverseProperty("Target")]
12 public virtual ActRelationshipList InboundRelationship { get; set; }
13

14 public virtual ParticipationList Participation { get; set; }
15

16

17 public IList<T> GetAll<T>(RoleType relationshipType) where T : Role
18 {
19 List<T> result = null;
20

21 if (Participation != null &&
Participation.RolesDict.ContainsKey(relationshipType))

22 {
23 var roles = Participation.RolesDict[relationshipType];
24 result = roles.OfType<T>().ToList();
25 }
26

27 return (result!=null && result.Count>0 ? result : null);
28 }
29

30 public IList<T> GetAll<T>(ActType relationshipType) where T : Act

98

A Dynamic Product Line for an EHRMS Patrick Spitzer

31 {
32 var result = new List<T>();
33 if (OutboundRelationship!=null &&

OutboundRelationship.TargetDict.ContainsKey(relationshipType))
34 {
35 var dictionaryTargets =

OutboundRelationship.TargetDict[relationshipType];
36 result.AddRange(dictionaryTargets.OfType<T>());
37 }
38 if (InboundRelationship != null &&

InboundRelationship.SourceDict.ContainsKey(relationshipType))
39 {
40 var dictionarySources =

InboundRelationship.SourceDict[relationshipType];
41 result.AddRange(dictionarySources.OfType<T>());
42 }
43

44 return (result.Count > 0 ? result : null);
45 }
46

47

48 public T Get<T>(RoleType relationshipType) where T : Role
49 {
50 T result;
51 var getAllResult = this.GetAll<T>(relationshipType);
52 result = getAllResult != null ? getAllResult[0] : null;
53 return result;
54 }
55

56 public T Get<T>(ActType relationshipType) where T : Act
57 {
58 T result;
59 var getAllResult = this.GetAll<T>(relationshipType);
60 result = getAllResult != null ? getAllResult[0] : null;
61 return result;
62 }
63

64 public void Set(ActType targetTypeCode, Act target, ActType?
sourceTypeCode = null)

65 {
66 if (OutboundRelationship != null &&

OutboundRelationship.TargetDict.ContainsKey(targetTypeCode))
67 {
68 for (int i = 0; i < this.OutboundRelationship.Count; i++)
69 {
70 var currentActRelationship =

this.OutboundRelationship.ElementAt(i);

99

A Dynamic Product Line for an EHRMS Patrick Spitzer

71 if (currentActRelationship.TargetType == targetTypeCode)
72 {
73 this.OutboundRelationship.RemoveAt(i);
74 }
75 }
76 }
77 this.Add(targetTypeCode, target, sourceTypeCode);
78 }
79

80 public void Set(RoleType roleTypeCode, Role role, ActType? actTypeCode
= null)

81 {
82 if (Participation != null &&

Participation.RolesDict.ContainsKey(roleTypeCode))
83 {
84 for (int i = 0; i < this.Participation.Count; i++)
85 {
86 var currentParticipation = this.Participation.ElementAt(i);
87 if (currentParticipation.RoleType == roleTypeCode)
88 {
89 this.Participation.RemoveAt(i);
90 }
91 }
92 }
93 this.Add(roleTypeCode, role, actTypeCode);
94 }
95

96

97 public void Add(ActType targetTypeCode, Act target, ActType?
sourceTypeCode = null)

98 {
99 var actRelationship = new ActRelationship(sourceTypeCode, this,

targetTypeCode, target);
100 if (this.OutboundRelationship == null) this.OutboundRelationship =

new ActRelationshipList();
101 this.OutboundRelationship.Add(actRelationship);
102 if (target.InboundRelationship == null) target.InboundRelationship

= new ActRelationshipList();
103 target.InboundRelationship.Add(actRelationship);
104 }
105

106 public void Add(RoleType roleTypeCode, Role role, ActType? actTypeCode
= null)

107 {
108 var participation = new Participation(roleTypeCode, role,

actTypeCode, this);

100

A Dynamic Product Line for an EHRMS Patrick Spitzer

109 if (this.Participation == null) this.Participation = new
ParticipationList();

110 this.Participation.Add(participation);
111 if (role.Participation == null) role.Participation = new

ParticipationList();
112 role.Participation.Add(participation);
113 }
114 }

101

A Dynamic Product Line for an EHRMS Patrick Spitzer

Bibliography

[Acm] Proceedings of the 26th International Conference on Software Engineer-
ing. Comparison of Software Product Line Architecture Design Meth-
ods: COPA, FAST, FORM, KobrA and QADA. eng. In collab. with
Mari Matinlassi. ACM Special Interest Group on Software Engineering.
Washington, DC: IEEE Computer Society, 2004. isbn: 0-7695-2163-0.
url: http://dl.acm.org/citation.cfm?id=998675.

[AK15] Hwi Ahn and Sungwon Kang. A Comparison of Software Product Line
Architecture Design Methods from the Practicality Viewpoint. 2015.
url: https://www.researchgate.net/publication/266171804_
A _ Comparison _ of _ Software _ Product _ Line _ Architecture _
Design_Methods_from_the_Practicality_Viewpoint (visited on
2017-01-28).

[Ape+13] Sven Apel et al. Feature-oriented software product lines. Concepts and
implementation. eng. Berlin: Springer, 2013. 315 pp. isbn: 978-3-642-
37520-0.

[Bea+08] T. Beale et al. EHR Information Model. The openEHR Reference Model.
Ed. by openEHR Foundation. 2008. url: http://www.openehr.org/
releases/1.0.2/architecture/rm/ehr_im.pdf (visited on 2017-04-
06).

[Bee11] George W. Beeler. Introduction to: HL7 Reference Information
Model (RIM). Health Level Seven International. 2011. url:
https://www.hl7.org/documentcenter/public_temp_F88F5C4B-
1C23 - BA17 - 0CCBB0C201C99D4B / calendarofevents / himss / 2011 /
HL7 % 20Reference % 20Information % 20Model . pdf (visited on
2017-02-07).

102

http://dl.acm.org/citation.cfm?id=998675
https://www.researchgate.net/publication/266171804_A_Comparison_of_Software_Product_Line_Architecture_Design_Methods_from_the_Practicality_Viewpoint
https://www.researchgate.net/publication/266171804_A_Comparison_of_Software_Product_Line_Architecture_Design_Methods_from_the_Practicality_Viewpoint
https://www.researchgate.net/publication/266171804_A_Comparison_of_Software_Product_Line_Architecture_Design_Methods_from_the_Practicality_Viewpoint
http://www.openehr.org/releases/1.0.2/architecture/rm/ehr_im.pdf
http://www.openehr.org/releases/1.0.2/architecture/rm/ehr_im.pdf
https://www.hl7.org/documentcenter/public_temp_F88F5C4B-1C23-BA17-0CCBB0C201C99D4B/calendarofevents/himss/2011/HL7%20Reference%20Information%20Model.pdf
https://www.hl7.org/documentcenter/public_temp_F88F5C4B-1C23-BA17-0CCBB0C201C99D4B/calendarofevents/himss/2011/HL7%20Reference%20Information%20Model.pdf
https://www.hl7.org/documentcenter/public_temp_F88F5C4B-1C23-BA17-0CCBB0C201C99D4B/calendarofevents/himss/2011/HL7%20Reference%20Information%20Model.pdf

A Dynamic Product Line for an EHRMS Patrick Spitzer

[Bee15] Ulrich Beez. “Terminology-Based Retrieval of Medical Publications”.
Master thesis. Darmstadt: University of Applied Science Darmstadt,
2015.

[Ben06] Messaoud Benantar. Access control systems. Security, identity manage-
ment and trust models. eng. Boston, MA: Springer Science+Business
Media Inc, 2006. 261 pp. isbn: 9780387277165. doi: 10.1007/0-387-
27716-1. url: http://dx.doi.org/10.1007/0-387-27716-1.

[Ber09] Eta S. Berner. Clinical Decision Support Systems. State of the Art.
Agency for Healthcare Research and Quality. 2009. url: https://
healthit.ahrq.gov/sites/default/files/docs/page/09-0069-
EF_1.pdf (visited on 2017-04-07).

[BG03] David W. Bates and Atul A. Gawande. “Improving safety with informa-
tion technology”. eng. In: The New England journal of medicine 348 (25
2003). Journal Article Research Support, U.S. Gov’t, P.H.S., pp. 2526–
2534. issn: 0028-4793. doi: 10.1056/NEJMsa020847. eprint: 12815139.

[BGP12] Luciano Baresi, Sam Guinea, and Liliana Pasquale. “Service-Oriented
Dynamic Software Product Lines”. In: Computer 45 (10 2012), pp. 42–
48. issn: 0018-9162. doi: 10.1109/MC.2012.289.

[BHW15] Ulrich Beez, Bernhard G. Humm, and Paul Walsh. “Semantic AutoSug-
gest for Electronic Health Records”. In: 2015 International Conference
on Computational Science and Computational Intelligence (CSCI). (Las
Vegas, NV, USA). 2015, pp. 760–765. doi: 10.1109/CSCI.2015.85.

[BM13] Arshdeep Bahga and Vijay K. Madisetti. “A cloud-based approach for
interoperable electronic health records (EHRs)”. eng. In: IEEE jour-
nal of biomedical and health informatics 17 (5 2013). Journal Article,
pp. 894–906. issn: 2168-2194. doi: 10.1109/JBHI.2013.2257818.
eprint: 25055368.

[Bér16] David Bérubé. Row level security in EntityFramework 6 (EF6).
Ed. by Microsoft. 2016. url: https : / / blogs . msdn . microsoft .
com / mvpawardprogram / 2016 / 02 / 09 / row - level - security - in -
entityframework-6-ef6/ (visited on 2017-03-23).

103

https://doi.org/10.1007/0-387-27716-1
https://doi.org/10.1007/0-387-27716-1
http://dx.doi.org/10.1007/0-387-27716-1
https://healthit.ahrq.gov/sites/default/files/docs/page/09-0069-EF_1.pdf
https://healthit.ahrq.gov/sites/default/files/docs/page/09-0069-EF_1.pdf
https://healthit.ahrq.gov/sites/default/files/docs/page/09-0069-EF_1.pdf
https://doi.org/10.1056/NEJMsa020847
12815139
https://doi.org/10.1109/MC.2012.289
https://doi.org/10.1109/CSCI.2015.85
https://doi.org/10.1109/JBHI.2013.2257818
25055368
https://blogs.msdn.microsoft.com/mvpawardprogram/2016/02/09/row-level-security-in-entityframework-6-ef6/
https://blogs.msdn.microsoft.com/mvpawardprogram/2016/02/09/row-level-security-in-entityframework-6-ef6/
https://blogs.msdn.microsoft.com/mvpawardprogram/2016/02/09/row-level-security-in-entityframework-6-ef6/

A Dynamic Product Line for an EHRMS Patrick Spitzer

[CA13] Brian Coats and Subrata Acharya. “The forecast for electronic health
record access”. In: Proceedings of the 2013 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining -
ASONAM ’13. the 2013 IEEE/ACM International Conference. (Nia-
gara, Ontario, Canada). Ed. by Jon Rokne and Christos Faloutsos.
New York, New York, USA: ACM Press, 2013, pp. 937–942. isbn:
9781450322409. doi: 10.1145/2492517.2500329.

[CBK13] Rafael Capilla, Jan Bosch, and Kyo-Chul Kang, eds. Systems and
software variability management. Concepts, tools and experiences. eng.
Capilla, Rafael (Hrsg.) Bosch, Jan (Hrsg.) Kang, Kyo-Chul (Hrsg.)
Heidelberg: Springer, 2013. isbn: 978-3-642-36582-9.

[CCW06] Frederick Chong, Gianpaolo Carraro, and Roger Wolter. Multi-Tenant
Data Architecture. Microsoft. 2006. url: https://msdn.microsoft.
com/en-us/library/aa479086.aspx (visited on 2017-02-24).

[CN09] Paul Clements and Linda Northrop. Software product lines. Practices
and patterns. 7. print. SEI series in software engineering. Boston et al.:
Addison-Wesley, 2009. isbn: 0201703327.

[Cor] SemAntically integrating Genomics with Electronic health records for
Cancer CARE. CORDIS. 2017. url: http://cordis.europa.eu/
project/rcn/194165_de.html (visited on 2017-02-14).

[Ess00] Bert Esselink. A Practical guide to localization. Vol. v. 4. Language
international world directory. 2000. isbn: 9789027298188. url: http:
//search.ebscohost.com/login.aspx?direct=true&scope=site&
db=e000xat&AN=334739.

[Feh14] Christoph Fehling. Cloud computing patterns. Fundamentals to design,
build, and manage cloud applications. eng. Wien: Springer, 2014. isbn:
978-3-7091-1567-1. url: http://lib.myilibrary.com/detail.asp?
id=635690.

[Fie00] Roy Thomas Fielding. “Architectural Styles and the Design of
Network-based Software Architectures”. University of California, 2000.
url: https://www.ics.uci.edu/~fielding/pubs/dissertation/
fielding_dissertation.pdf (visited on 2017-03-22).

104

https://doi.org/10.1145/2492517.2500329
https://msdn.microsoft.com/en-us/library/aa479086.aspx
https://msdn.microsoft.com/en-us/library/aa479086.aspx
http://cordis.europa.eu/project/rcn/194165_de.html
http://cordis.europa.eu/project/rcn/194165_de.html
http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=e000xat&AN=334739
http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=e000xat&AN=334739
http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=e000xat&AN=334739
http://lib.myilibrary.com/detail.asp?id=635690
http://lib.myilibrary.com/detail.asp?id=635690
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

A Dynamic Product Line for an EHRMS Patrick Spitzer

[Gam+11] Erich Gamma et al. Design patterns. Elements of reusable
object-oriented software. eng. 39. printing. Addison-Wesley professional
computing series. Boston: Addison-Wesley, 2011. 395 pp. isbn:
0201633612.

[Gom+12] Antônio Tadeu Azevedo Gomes et al. “SPLiCE. A Software Product
Line for Healthcare”. In: Proceedings of the 2nd ACM SIGHIT
symposium on International health informatics - IHI ’12. the 2nd
ACM SIGHIT symposium. (Miami, Florida, USA). Ed. by Gang Luo
et al. New York, New York, USA: ACM Press, 2012, p. 721. isbn:
9781450307819. doi: 10.1145/2110363.2110447.

[Hah16] Ralf Hahn. Software Product Line Engineering. How to develop similiar
products efficiently. Darmstadt, 2016. url: https : / / www . fbi . h -
da.de/fileadmin/personal/r.hahn/2015WS/SWPLE/RH_SWPLE.pdf
(visited on 2017-03-14).

[Hal97] Patrick A.V Hall. Software without frontiers. A multi-platform, multi-
cultural, multi-nation approach. Wiley series in software engineering
practice. Chichester [etc.]: J. Wiley, 1997. X, 338. isbn: 9780471969747.

[Heaa] About HL7. Health Level Seven International. 2017. url: http://www.
hl7.org/about/index.cfm?ref=nav (visited on 2017-02-06).

[Heab] HL7 Reference Information Model. Health Level Seven International.
2017. url: http://www.hl7.org/implement/standards/rim.cfm
(visited on 2017-02-07).

[Hor10] Cay S. Horstmann. Java concepts. 6th ed. Hoboken: John Wiley & Sons,
2010. 666 S. isbn: 9780470509470.

[HP03] Günter Halmans and Klaus Pohl. “Communicating the variability of a
software-product family to customers”. In: Software and Systems Mod-
eling 2 (1 2003), pp. 15–36. issn: 1619-1366. doi: 10.1007/s10270-
003-0019-9.

[Hri10] Vagelis Hristidis. Information discovery on electronic health records.
Chapman & Hall/CRC data mining and knowledge discovery series.
Boca Raton: Taylor & Francis, 2010. isbn: 9781420090413.

105

https://doi.org/10.1145/2110363.2110447
https://www.fbi.h-da.de/fileadmin/personal/r.hahn/2015WS/SWPLE/RH_SWPLE.pdf
https://www.fbi.h-da.de/fileadmin/personal/r.hahn/2015WS/SWPLE/RH_SWPLE.pdf
http://www.hl7.org/about/index.cfm?ref=nav
http://www.hl7.org/about/index.cfm?ref=nav
http://www.hl7.org/implement/standards/rim.cfm
https://doi.org/10.1007/s10270-003-0019-9
https://doi.org/10.1007/s10270-003-0019-9

A Dynamic Product Line for an EHRMS Patrick Spitzer

[HW15] Bernhard G. Humm and Paul Walsh. “Flexible yet Efficient Manage-
ment of Electronic Health Records”. In: 2015 International Conference
on Computational Science and Computational Intelligence (CSCI). (Las
Vegas, NV, USA). 2015, pp. 771–775. doi: 10.1109/CSCI.2015.84.

[Ide16] Johannes Idelhauser. “A Clinical Decision Support System for Person-
alised Medicine”. Master thesis. Darmstadt: University of Applied Sci-
ence Darmstadt, 2016.

[Jun] JUnit Test Categories. JUnit. url: http : / / junit . org / junit4 /
javadoc/4.12/org/junit/experimental/categories/Categories.
html (visited on 2017-03-01).

[Kan15] Joydip Kanjilal. Entity Framework Tutorial. 2nd ed. Olton Birmingham:
Packt Publishing Ltd, 2015. isbn: 9781783550029. url: http://gbv.
eblib.com/patron/FullRecord.aspx?p=3564802.

[Kir08] Wilhelm Kirch, ed. Encyclopedia of Public Health. eng. Dordrecht:
Springer-Verlag Berlin Heidelberg, 2008. isbn: 978-1-4020-5614-7.
url: http://site.ebrary.com/lib/alltitles/docDetail.action?
docID=10284664.

[KMK12] Rouven Krebs, Christof Momm, and Samuel Kounev. Architectural
Concerns in Multi-Tenant SaaS Applications. 2012. url: https :
//se2.informatik.uni-wuerzburg.de/pa/uploads/papers/paper-
371.pdf (visited on 2017-04-12).

[KS11] Alexander Kaletsch and Ali Sunyaev. Privacy Engineering: Personal
Health Records in Cloud Computing Environments. 2011. url: http:
//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.667.
7673&rep=rep1&type=pdf (visited on 2017-04-02).

[Kuo11] Alex Mu-Hsing Kuo. “Opportunities and challenges of cloud computing
to improve health care services”. eng. In: Journal of medical Internet
research 13 (3 2011). Journal Article, e67. issn: 1438-8871. doi: 10.
2196/jmir.1867. eprint: 21937354.

[LSR07] Frank Linden, Klaus Schmid, and Eelco Rommes. Software Product
Lines in Action. The Best Industrial Practice in Product Line Engi-
neering. 1. Aufl. s.l.: Springer-Verlag, 2007. isbn: 9783540714361. url:
http://site.ebrary.com/lib/alltitles/docDetail.action?
docID=10187468.

106

https://doi.org/10.1109/CSCI.2015.84
http://junit.org/junit4/javadoc/4.12/org/junit/experimental/categories/Categories.html
http://junit.org/junit4/javadoc/4.12/org/junit/experimental/categories/Categories.html
http://junit.org/junit4/javadoc/4.12/org/junit/experimental/categories/Categories.html
http://gbv.eblib.com/patron/FullRecord.aspx?p=3564802
http://gbv.eblib.com/patron/FullRecord.aspx?p=3564802
http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10284664
http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10284664
https://se2.informatik.uni-wuerzburg.de/pa/uploads/papers/paper-371.pdf
https://se2.informatik.uni-wuerzburg.de/pa/uploads/papers/paper-371.pdf
https://se2.informatik.uni-wuerzburg.de/pa/uploads/papers/paper-371.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.667.7673&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.667.7673&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.667.7673&rep=rep1&type=pdf
https://doi.org/10.2196/jmir.1867
https://doi.org/10.2196/jmir.1867
21937354
http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10187468
http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10187468

A Dynamic Product Line for an EHRMS Patrick Spitzer

[LSW10] Hans Löhr, Ahmad-Reza Sadeghi, and Marcel Winandy. “Securing the
e-health cloud”. In: Proceedings of the ACM international conference
on Health informatics - IHI ’10. the ACM international conference.
(Arlington, Virginia, USA). Ed. by Ümit V. Çatalyürek et al. New
York, New York, USA: ACM Press, 2010, p. 220. isbn: 9781450300308.
doi: 10.1145/1882992.1883024.

[LYW13] Mingtao Lei, Wenbin Yao, and Cong Wang. “A Trust-Based Data
Backup Method on the Cloud”. In: Trustworthy Computing and
Services. Ed. by Yuyu Yuan, Xu Wu, and Yueming Lu. Vol. 320.
Communications in Computer and Information Science. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 178–185. isbn:
978-3-642-35794-7. doi: 10.1007/978-3-642-35795-4_23.

[LÖ09] Ling Liu and M. Tamer Özsu, eds. Encyclopedia of database systems.
eng. Springer reference. New York, NY: Springer, 2009. isbn: 978-0-
387-39940-9. doi: 10.1007/978-0-387-39940-9. url: http://dx.
doi.org/10.1007/978-0-387-39940-9.

[Mica] BindingList Class Documentation. Microsoft. url: https : / / msdn .
microsoft.com/en-gb/library/ms132679(v=vs.110).aspx (visited
on 2017-02-22).

[Micb] Design patterns for multitenant SaaS applications and Azure SQL
Database. Microsoft. 2017. url: https://docs.microsoft.com/en-
us/azure/sql-database/sql-database-design-patterns-multi-
tenancy-saas-applications (visited on 2017-04-12).

[Micc] Group and Run Automated Tests Using Test Categories. Microsoft. url:
https://msdn.microsoft.com/en- us/library/dd286683.aspx
(visited on 2017-03-01).

[Micd] Microsoft, ed. How to: Create a Localized Version of a Resource File.
url: https://msdn.microsoft.com/en-us/library/aa992030(v=
vs.100).aspx (visited on 2017-02-28).

[Mice] Security, Authentication, and Authorization in ASP.NET Web API. Mi-
crosoft. 2012. url: https://docs.microsoft.com/en-us/aspnet/
web-api/overview/security/ (visited on 2017-02-27).

107

https://doi.org/10.1145/1882992.1883024
https://doi.org/10.1007/978-3-642-35795-4_23
https://doi.org/10.1007/978-0-387-39940-9
http://dx.doi.org/10.1007/978-0-387-39940-9
http://dx.doi.org/10.1007/978-0-387-39940-9
https://msdn.microsoft.com/en-gb/library/ms132679(v=vs.110).aspx
https://msdn.microsoft.com/en-gb/library/ms132679(v=vs.110).aspx
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-design-patterns-multi-tenancy-saas-applications
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-design-patterns-multi-tenancy-saas-applications
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-design-patterns-multi-tenancy-saas-applications
https://msdn.microsoft.com/en-us/library/dd286683.aspx
https://msdn.microsoft.com/en-us/library/aa992030(v=vs.100).aspx
https://msdn.microsoft.com/en-us/library/aa992030(v=vs.100).aspx
https://docs.microsoft.com/en-us/aspnet/web-api/overview/security/
https://docs.microsoft.com/en-us/aspnet/web-api/overview/security/

A Dynamic Product Line for an EHRMS Patrick Spitzer

[Mie+09] Ralph Mietzner et al. “Variability modeling to support customization
and deployment of multi-tenant-aware Software as a Service applica-
tions”. In: 2009 ICSE Workshop on Principles of Engineering Service
Oriented Systems. 2009 ICSE Workshop on Principles of Engineering
Service Oriented Systems, PESOS. (Vancouver, BC, Canada). IEEE,
2009, pp. 18–25. isbn: 978-1-4244-3716-0. doi: 10.1109/PESOS.2009.
5068815.

[NSind] NSilico, ed. NSilico - About. n.d. url: http://www.nsilico.com/
About (visited on 2017-02-14).

[Ora] Internationalizing the Sample Program. Oracle. url: https://docs.
oracle.com/javase/tutorial/i18n/intro/steps.html (visited on
2017-02-28).

[PBL05] Klaus Pohl, Günter Böckle, and Frank Linden. Software Product Line
Engineering. Foundations, Principles, and Techniques. eng. Berlin, Hei-
delberg: Springer-Verlag Berlin Heidelberg, 2005. isbn: 3540243720.
doi: 10.1007/3-540-28901-1. url: http://site.ebrary.com/
lib/alltitles/docDetail.action?docID=10229377.

[RA11] Stefan T. Ruehl and Urs Andelfinger. “Applying software product
lines to create customizable software-as-a-service applications”.
In: Proceedings of the 15th International Software Product Line
Conference on - SPLC ’11. the 15th International Software
Product Line Conference. (Munich, Germany). Ed. by Ina Schaefer,
Isabel Klaus, and John Schmid. New York, New York, USA: ACM
Press, 2011. isbn: 9781450307895. doi: 10.1145/2019136.2019154.

[Red] Hibernate Envers - Easy Entity Auditing. Red Hat Inc. 2012. url:
https://docs.jboss.org/hibernate/envers/3.6/reference/en-
US/html_single/ (visited on 2017-03-07).

[Sch13] Julia Schroeter. Feature-Based Configuration Management of Reconfig-
urable Cloud Applications. Dresden, 2013. url: http://www.qucosa.
de/fileadmin/data/qucosa/documents/14141/diss-schroeter-
04-26-revised-final-pdfA1b.pdf (visited on 2017-04-12).

[Sch14] Jan Schaffner. Multi Tenancy for Cloud-Based In-Memory Column
Databases. Workload Management and Data Placement. @Potsdam,
Univ., Diss., 2013. eng. In-Memory Data Management Research.

108

https://doi.org/10.1109/PESOS.2009.5068815
https://doi.org/10.1109/PESOS.2009.5068815
http://www.nsilico.com/About
http://www.nsilico.com/About
https://docs.oracle.com/javase/tutorial/i18n/intro/steps.html
https://docs.oracle.com/javase/tutorial/i18n/intro/steps.html
https://doi.org/10.1007/3-540-28901-1
http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10229377
http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10229377
https://doi.org/10.1145/2019136.2019154
https://docs.jboss.org/hibernate/envers/3.6/reference/en-US/html_single/
https://docs.jboss.org/hibernate/envers/3.6/reference/en-US/html_single/
http://www.qucosa.de/fileadmin/data/qucosa/documents/14141/diss-schroeter-04-26-revised-final-pdfA1b.pdf
http://www.qucosa.de/fileadmin/data/qucosa/documents/14141/diss-schroeter-04-26-revised-final-pdfA1b.pdf
http://www.qucosa.de/fileadmin/data/qucosa/documents/14141/diss-schroeter-04-26-revised-final-pdfA1b.pdf

A Dynamic Product Line for an EHRMS Patrick Spitzer

Schaffner, Jan (author.) Dordrecht: Springer, 2014. 140 pp. isbn:
9783319004976. doi: 10 . 1007 / 978 - 3 - 319 - 00497 - 6. url:
http://gbv.eblib.com/patron/FullRecord.aspx?p=1317762.

[SR12] Klaus Schmid and Andreas Rummler. “Cloud-based software product
lines”. In: Proceedings of the 16th International Software Product Line
Conference on - SPLC ’12 -volume 1. the 16th International Software
Product Line Conference. (Salvador, Brazil). Ed. by ACM. New York,
New York, USA: ACM Press, 2012, p. 164. isbn: 9781450310956. doi:
10.1145/2364412.2364440.

[Tod07] Dobromir Todorov.Mechanics of user identification and authentication.
Fundamentals of identity management. Boca Raton: Auerbach Publica-
tions, 2007. isbn: 9781420052206.

[Ame04] American National Standards Institute, ed. Role Based Access Control.
ANSI INCITS 359-2004. New York, 2004.

[Int05] International Organization for Standardization, ed. Health informat-
ics - Electronic health record - Definition, scope and context. ISO/TR
20514:2005. Switzerland, 2005. url: http://www.iso.org/iso/iso_
catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39525.

[Int06] International Organization for Standardization, ed. Health informatics
- HL7 version 3 - Reference information model - Release 1. ISO/HL7
21731:2006. Switzerland, 2006. url: http://www.iso.org/iso/iso_
catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=
40399.

[van02] F. van der Linden. “Software product families in Europe. The Esaps &
Cafe projects”. In: IEEE Software 19 (4 2002), pp. 41–49. issn: 0740-
7459. doi: 10.1109/MS.2002.1020286.

109

https://doi.org/10.1007/978-3-319-00497-6
http://gbv.eblib.com/patron/FullRecord.aspx?p=1317762
https://doi.org/10.1145/2364412.2364440
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39525
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39525
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=40399
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=40399
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=40399
https://doi.org/10.1109/MS.2002.1020286

	Introduction
	Project
	Motivation
	Structure

	Problem Statement
	Background
	Software Product Line Engineering
	Product Lines
	Domain Engineering
	Application Engineering
	Variability
	Dynamic Software Product Lines for Cloud Computing

	Electronic Health Records
	HL7 Reference Information Model

	Domain Requirements Engineering
	Commonality Analysis
	Managing Electronic Health Records of Patients
	Technical Services
	HL7 Reference Information Model as Data Model
	Client Flexibility
	Configuration Hierarchy

	Variability Analysis
	Medical Specialties
	Medical Information Services
	Technical Services

	Domain Design
	System Overview
	Architecture
	Generic Data Model
	Code-Generation of the Data Model
	Data Historization
	Multi-Tenant Data Architecture
	Access Management
	Application Layer
	Client Layer

	Multi-Language Support
	Product Line Testing
	Client Variability
	Patient Records with User Interface Components
	Variable Attribute Fields

	Domain Realization
	Generic Data Model
	Application Layer and Database Implementation
	Efficient Getter and Setter Methods for the Server
	Client Implementation

	Designing Patient Records with User Interface Components
	Patient Record Service
	Patient Record View Component
	Patient Record Navigationbar

	Evaluation
	Family Evaluation Framework
	Overview
	Execution
	Summary

	Requirements Evaluation

	Related Work
	Conclusion and Future Work
	Conclusion
	Future Work
	Configuration
	Security
	Client Flexibility
	Additional Technical Services
	Miscellaneous

	Appendices
	HL7 Reference Information Model
	Orthogonal Variability Model
	Add Patient User Interface
	Act Class Implementation

