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ABSTRACT

Die differenzielle  Genanalyse ist  eine Komponente der Genforschung. Die Ergebnisse der
Analyse können unter anderem helfen die Ursachen von phänotypischen Erscheinungen zu
verstehen.

Es existieren bereits viele quelloffene Pakete für die Programmiersprache R, welche zum
Auffinden von differenziell exprimierten Genen genutzt werden können. Der einzige Nachteil
ist  hierbei,  dass  wahrscheinlich  nicht  jeder  Wissenschaftler  über  Programmierkenntnisse
verfügt, welche aber für die Benutzung der Pakete vorausgesetzt werden.

Das Resultat von dieser Masterarbeit soll den Wissenschaftlern eine Lösung in Form einer
Pipeline  für  differenzielle  Genanalysen  darbieten,  welche  einfach  und  ohne
Programmierkenntnisse  zu  nutzen  ist.  Des  weiteren  sollen  mehrere  Pakete  mit
unterschiedlichen zugrundeliegenden statistischen Verfahren integriert  werden.  Über  die
Pakete hinweg genutzte Parameter sollen hierbei vereinheitlicht werden. Diese Maßnahme
soll  das  Lesen  von  mehreren  Handbüchern  ersparen,  so  dass  mehr  Zeit  zur  Forschung
verwendet werden kann.
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ABSTRACT

The differential expression analysis is a component of the genetic research. The results of
this analysis could amongst other things help to understand the origin of several phenotypic
occurrences.

Already many open source packages for the programming language R exist, that could be
used to find differentially expressed genes. The only disadvantage is that probably not every
scientist  is  in  charge  of  programming  language  skills,  which are  necessary  to use  those
packages.

The outcome of this thesis should provide a solution in form of a pipeline for differential
gene  expression  analysis  to  scientists  which  could  be  used  easily  and  without  having
programming knowledge. Furthermore multiple packages with different statistical models
should be integrated. All common used parameters should be unified across these packages.
This measurement should spare the reading of multiple manuals and save time that could be
used for research.
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1 INTRODUCTION

In medical context, these days it is not enough to fight only the symptoms and signs of a
disease. To get a better understanding, it is necessary to have a deeper look into the cause
of the problem. That this is not only approachable by physicians, but becoming more and
more an interdisciplinary challenge, is shown up also by the history of the Human Genome
Project (abbr.: HGP). 
The  HGP  ran  from  1990 to  2003  and  was  coordinated through the  U.S.  Department  of
Energy and the National  Institutes  of  Health  [1].  One of  the goals  was to sequence the
human genome, which includes the assembling (determining of the complete 3 billion DNA
base pairs) and furthermore annotation (finding the corresponding label and information to
a DNA base pair) of the genomes [2]. To solve this, knowledge from biologists, physicists,
chemists, computer scientists, mathematicians and engineers around the world was needed,
to develop necessary advanced equipment and tools [3]. Since we nowadays know almost
every gene in the human body,  the question about what they are doing, becomes more
interesting  [4].  Through  the  HGP,  the  course  was  set  for  more  lucrative  Differential
Expression Analysis methods, which could give answers dedicated to this question [5]. 
Currently  there are existing many open source tools,  that are able to detect differential
expressed genes, by using different statistical approaches. The downside is that they are
mostly  running under the R environment only and therefore are not  usable with having
programming knowledge. [6]
The outcome of  this  work should support  physicians by  detecting differential  expressed
genes between samples, without any necessary programming knowledge.

1.1 WHY DEVELOPING A DIFFERENTIAL EXPRESSION ANALYSIS PIPELINE?

The open source and open development project Bioconductor, is providing many tools for
the analysis and comprehension of high-throughput genomic data [7]. Just under the topic
“DifferentialExpression” are 184 different packages listed (Bioconductor version 3.2). [6]

But the downside for physicians with no or low programming skills is, that they are almost all
written in R programming language and need to be used under R environment.  The amount of
packages also could be a bit overwhelming.

Bioconductor  has  a  large  international  community  which  can  help  if  any  questions  or
problems occur. Additionally every package should also contain an appropriate documented
workflow. Because this practical example contains functional program code, the user could
replicate it locally [8].



2

Unfortunately the terminology of every package can be slightly different. If the results of a
package do not satisfy the users estimations, he or she has to search another package and read
its documentation again. Additionally the examples are often fitted unique to already prepared
input data. Data cleaning and data transformation could be a time consuming procedure. 

All  in one,  the pipeline should make it  possible to enable the usage of  selected analysis
packages from Bioconductor for everyone. The focus of this thesis lies on the integration of
multiple  adapted  differential  expression  analysis  (abbr.:  DEA)  packages  with  different
underlying statistical models. They should be set up behind an interface, which standardizes
parameters and makes the usage as uniform and package independent as possible. 
The benefit would be, that the user needs to read only one manual, if any, for all integrated
packages. 
Standard steps which are belonging to an analysis, should also be integrated and accessible.
Examples for  this  steps are  the filtering of  count  and phenotypic  data,  the selection of
experimental groups and the possibility to visualize data. Another benefit would be, that
through the combination of  many work process steps into one tool,  many error  factors
would be reduced for the user. He could focus on the results, without worrying about the
intermediate steps.
Furthermore, the abstract aspect which underlies the pipeline, should make it possible to
integrate different interfaces, which can pass the data comfortable to a presentation layer.
Therefore  all  features  could  be  made  accessible  through  an  easy  to  use  graphical  user
interface and no programming skills are required.
Additionally multiple modules could extend the pipeline with data analysis methods, such as
clustering,  which  makes  it  possible  to  find  completely  new  groups  and  discriminating
variables for a hypothesis, or to make a quality assurance.

1.2 PROJECT ENVIRONMENT

This thesis was developed within the „SemAntically integrating Genomics with Electronic
health  records  for  Cancer  CARE”  (acronym:  SAGE-CARE)  project,  coordinated  by  the
University of Applied Sciences in Darmstadt and funded by the European Commission  [9].
One important partner of this project is the company NSilico Life Science Ltd (abbr.: NSilico),
which has also supported actively the work of this thesis.

1.2.1 SAGE-CARE

SAGE-CARE  consists  out  of  an  interdisciplinary  team,  with  members  from  different
universities  and  companies.  Their  main  target  is  to  develop  software,  which  offers  the
possibility to create semantically and intelligent links between data from genetic analysis, or
medical results of research and electronic health records [10]. 
The outcome from the practical part of this thesis, should be integrated into this platform. A
use case could be similar to Simplicity™, a product from the participating company NSilico
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[11]. 

1.2.2 NSilico Life Science Ltd

The company is located in the Dublin 4 district in Ireland. Dr. Paul Walsh is Founder and Chief
Technology Officer from NSilico [12]. He is having the role of the project manager and was
also  the  first  contact  person  for  arising  specialist  questions  respective  to  genetic  and
statistical topics. 
There are currently three products on the website from NSilico, which are offered for sale:

• SimplicityMDT™:  A multi-Disciplinary Team management platform [13].
• MolPath: Serves an application for mobile devices, which could be used for molecular

pathology test ordering [14].
• Simplicity™: This product enables the possibility to access remotely multiple open-

source tools, to analysis raw sequence data. All necessary steps for the downstream
analysis  will  be easy  manageable  over  a  web interface,  without  necessary coding
knowledge [15].

1.2.3 Outline

This thesis contains the following chapters:

• Introduction

• Requirements: The functional and non-functional requirements of the practical part of 
this thesis.

• Background: All necessary information about the background of this thesis. Biological as 
well as technical.

• Concept of the Genetic Differential Expression Pipeline: Conceptional part of the 
developed tools.

• Implementation of the Genetic Differential Expression Pipeline: Here the most important 
implementation steps are described.

• Evaluation of the Genetic Differential Expression Pipeline: Describes the evaluation of 
the function and non-functional requirements.

• Conclusion: Explanation of the outcome of this thesis and further steps.
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2 REQUIREMENTS

This  chapter  describes  the  functional  and  non-functional  requirements  of  the  three
applications that should be developed in context of this thesis. The first two tools should
have the task to aggregate the input data for the main application.
The variety of programming languages is restricted to R and Python, for all three tools.

2.1 FUNCTIONAL REQUIREMENTS

The following sections are describing the functional requirements of every tool.

2.1.1 Aggregate Count Data

Identification Description

A.F1 Merge files with count data from separate samples into one file by using a key 
column.

A.F2 The several identifiers of a count shall be inserted into the unlabeled first 
column, representing the row names.

A.F3 The keys corresponding to the counts shall represent the column header. 

2.1.2 Aggregate Sample Data

Identification Description

B.F1 Merge files with phenotypic data from separate samples into one file by using a 
key column.

B.F2 The several keys shall be included as a column.

B.F3 The labels corresponding to the phenotypes shall represent the column header. 

2.1.3 Differential Expression Analysis Pipeline
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Identification Description

C.F1 Tool C shall have a functionality to import data from Tool A and Tool B.

C.F2 Data types and missing data from imported data shall be detected automatically.

C.F3 A function shall be available to make it possible to filter and select phenotypic 
data. The count data must be fitted correspondingly to the alternation.

C.F4 To enable Exploratory Data Analysis for the clinical data, there shall be a 
possibility to generate and export plots. Minimum requirement: count bar plot 
for categorical and box plot for numeric values.

C.F5 To enable Exploratory Data Analysis for the count data, the tool shall have the 
possibility to generate a Principal Component Analysis plot and a heat map with
hierarchical clustering.

C.F6 The possibility shall be given to filter count matrices, using common methods.

C.F7 The selection and configuration of different statistical models shall be possible.

C.F8 Significant differentially expressed genes shall be detected, using the previous 
configured models with the preprocessed data and a user given hypothesis.

C.F9 A comparison between results shall be possible, using a Venn diagram.

C.F10 Significant genes shall be exported to a file in a user given format.

2.2 NON-FUNCTIONAL REQUIREMENTS

The non-functional  requirements are  tool  independent.  For  a  better  readability  they are
divided into two subcategories. The first is describing all usage dependent requirements and
the second all coding style dependent non-functional requirements.

2.2.1 User's Perspective

Identification Description

NF1 The tools shall be usable without having programming knowledge.

NF2 No package dependent knowledge shall be necessary to use the tools.

2.2.2 Developer's Perspective

Identification Description
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NF3 Integrated differential expression packages shall be easy to maintain and 
exchange.

NF4 It shall be manageably possible to add other statistical packages.

NF5 System shall be integrable to foreign systems through an interface.

3 BACKGROUND

In  this  chapter,  some  basic  information  about  the  background  and  technological
environment of this thesis is given. The focus relies here only on thesis relevant topics.

3.1 WHAT IS GENE EXPRESSION?

This  chapter  is  not  going  too  far  into  detail  of  genetics,  but  should  just  give  a  basic
understanding for interested readers. 
Mutations in our deoxyribonucleic acid (abbr.: DNA) are the source of our varied society.
Though the complementary double helix is not the only matter of the phenotypic variation.
For example,  brain  cells  and liver  cells  from one individual  person should normally  have
identical  genotypes,  but  their  phenotypes  are  remarkably  different.  The  answer  of  the
question how that could be, is not to find in the physical makeup of the genome, but in its
expression. 
The term gene expression describes the synthesis of protein, which in turn determines the
phenotypic attributes. [4] This process is a fundamental dogma of molecular biology:

The DNA, specifying our genetic information in sections called genes, is converted into a
ribonucleic  acid  (abbr.:  RNA)  copy,  which  then  is  potentially  translated into  protein.  To
quantify the gene expression of a tissue, a possible way would be, to count the occurrences
of mRNA's (messenger RNA). ([16], p. 1 and 7)

3.2 DIFFERENTIAL EXPRESSION ANALYSIS

To absolve a DEA, it is necessary to quantify the gene occurrences in the sample tissues of
interest. There exist different methods for this approach, but this thesis will only focus on
the export from high-throughput sequencing machines and in the narrow sense, the method
called RNA-sequencing (abbr.: RNA-seq). [17]
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The following preparation steps have to be absolved, before the analysis can be started [18]:
1. A DNA Sequencer machine saves the read nucleotide sequences,  together with a

quality score in FASTQ formatted files.
2. The nucleotide sequences must be mapped to a reference genome or transcriptome.

The results are then stored commonly in files having SAM or BAM format.
3. A script counts how many reads map to each feature (here genes) and saves the

results in a given format.

Through the usage of  the received count  matrix,  it  is  now possible  to find differentially
expressed  genes,  which  means,  genes  with  differences  in  expression  level  across
experimental conditions [19]. 
One possible subject could be to get back to the example from the last  section,  to find
genes that are significantly more expressed in a liver than in a brain. 

3.3 SAMPLE TISSUES

The aim was to create user friendly and comfortable applications, which made it necessary
to use real sample data for the development process. Through the development on user
level, many unpredictable problems could be detected rapidly and eliminated.
One source of  the used sample data is  provided by the site  of  the project  “The Cancer
Genome Atlas” (abbr.: TCGA). It contains a public available database with sample collections
from tissues of different cancer types. 
The “Skin Cutaneous Melanoma” (abbr.:  SKCM) data set, which was used for this thesis,
includes 470 samples overall (see [20]) and corresponding 469 RNA-Seq result files ([21]).

3.4 PYTHON

The  programming  language  Python  is  developed under  an  open-source  license  which  is
making it free to use and to distribute [22]. 
Python is currently released in the two different major versions 2.x and 3.x. One of the main
reasons why 2.x is still maintained and available, is to keep the support for legacy modules
and for  operation  systems  with  2.x  installations.  Python 3.x  otherwise,  is  stated as  the
proper choice for a development in an actual environment. [23] 
Python  is  an  interpretable  language,  which  means  that  no  compilation  and  linking  is
necessary. This aspect enables the possibility to interpret input interactively on the fly. A
shell made for this task, is already included by the installation [24].

3.4.1 Indentation
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The language is designed to preserve software quality in focus to the code readability and
coherence  which  for  many  developers  sets  Python  apart  from  other  more  traditional
scripting languages ([25], p. 3). 
Functions have neither an explicit  begin or  end  tag, nor any braces that are marking the
begin and end. The only indication for the begin is a colon after the function call and the
used indentation of the code itself (see listing 3.1).  
As a consequence, the used spaces have to be equal in the whole source code, otherwise it
will result in an indentation error. ([26], p. 17)

3.4.2 Objects
The general-purpose programming language is often applied in scripting roles, but supports
nevertheless object oriented programming ([25], p. 5). Besides the objects which could be
created  through  classes,  everything  else  is  also  an  object  due  the  object-definition  of
Python. 
An object consist out of a value, a type and an identity. The objects identity (like an address)
and type is unchangeable after creation, while the value could be changed if the object is
mutable. 
The mutability of objects is type dependent. Immutable objects are for example numbers,
strings,  instances  and  tuples.  Mutable  on  the  other  hand  are  dictionaries  and  lists.
Explicit deletion of objects is not supported, instead they could get deleted by the garbage
collector if they are unreachable.[27]

3.4.3 Data Types

Python does not require an explicit data type declaration. Instead it will detect the data type
automatically by the value assignment. 
It follows a table of some native data types (see also [26], p. 23):

Listing 3.1: Python "Hello World" example, showing the indentation.
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Table 1: The Native Data Types of Python.

Numeric Types Could be int, float or complex.

Text Sequence Type A string is an object of the class str in Python.

Boolean Values Constant objects, written as True and False.

Lists Like in other languages, lists are mutable sorted sequences that 
could store multiple items.

Tuples Like lists, but immutable after creation.

Sets Sets are unsorted collections of unique elements.

Dictionaries A dictionary is a mutable unsorted set of key value pairs.

The listing 3.2 is showing some exemplary variable assignments with the more specific data
types:

• Line 1 to 4 is showing the creation of a list with the very common appending function,
which inserts the given element at the end. Additionally, a feature which is called
splicing is used in line 3. Splicing allows to create a new object out of a given interval.
The interval has to be in a range of zero to the length of the given object.  

• Line 5 to 7 includes the assignment of a tuple and is showing up that negative values
are also allowed for indexing. 

• Line  8  to  11  has  been  used  to  demonstrate  the  creation  of  a  set.  For  sets  exist
different  methods  which  are  common  in  the  set-theory.  In  case  of  line  10,  the
intersection of the two sets was used. 

• Line 12 to 14 is demonstrating the usage of directories in Python. The values could be
accessed through the key values. The key values could also be stored as a set.

Listing 3.2: Operations with native data types in Python.
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3.5 R

R is a free programming language and environment with the focus on statistical computing
and graphics. It can be considered as different implementation of S, which was developed at
Bell  Laboratories.  The source is  freely  available  (under GNU General  Public  License)  and
could be installed on a wide variety of UNIX platforms and similar systems, Windows and
Mac OS. [28] 
R is having some parallels to Python. It is also an interpretable language and comes with its
own interactive console. The programming language offers object oriented programming as
well and detects data types internally (see listing 3.3). [29]

3.5.1 Integrated Development Environment

A large arsenal of statistic tools is already included in the R core packages. The results of the
analysis could be stored or directly shown by using graphical facilities. 
Besides that, a help system is also integrated, which allows to read the documentation of
functions by just typing “?function” into the interactive console. 
To get all the advantages of this environment, it is recommended to use R on an X window
system or in an integrated development environment (abbr.: IDE). [29] Possible IDE's are for
example Rstudio (see figure 1) or Eclipse with the StatET plug-in. 

Listing 3.3: R "Hello World" example. No explicit declaration of a data type is needed.
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3.5.2 Packages

Many system default  functions are written in R itself.  That makes it  easier  for  a user to
follow the algorithmic choices made and also gives him good examples to provide his own
functions.  
If he wants to distribute his functions with the R community, one possibility would be to
create a package and put it on one of the Comprehensive R Archive Network (abbr.: CRAN)
families internet sites. [28]
Before a build package is committed to CRAN, it  should be checked (with the flag “--as-
cran”)  against  warnings  and  errors.  All  necessary  tools  are  already  available  after  the
installation of R. The package checker has a high granularity and checks even if the titles are
capitalized correctly and examples in the documentation are working. [30]

Figure 1: This screenshot shows the IDE RStudio with a common window setup for R 
developers. From left top to bottom right, we can see: The source editor, reachable functions in 
the global environment, the interactive R console and the window for the graphical output.
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Package Structure

The smallest possible package consist out of a folder called “R” and two files with the name
“DESCRIPTION” and “NAMESPACE”. A more common used structure is described in table 2.
[31]

Table 2: A typical package structure in R.

/data-raw/ Directory with files that should be excluded in the build package.
Typically large source files that have been used for the creation of
the compressed files in R format in the /data/ directory. The usage
is optional.

/data/ Data which could be loaded by the users of the package. Typically
used for examples. The usage is optional.

/man/ Directory  which  should  contain  the  documentation  of  each
function.

/R/ All source code files should be stored in that directory.

/tests/ This directory should contain all necessary tests.

DESCRIPTION A  file  that  holds  general  information  about  the  package,  the
authors, the dependencies to R and other packages.

NAMESPACE Defines which variables should be exported from the package, to
be reachable by the user and additionally which variables should be
imported from other packages.

3.5.3 Data Types

R has its main advantages in working with  data structures. The easiest variant of such a
structure here is the vector, which consist out of an ordered list of unique elements. These
vectors could be used to create more complex structures, like a matrix. 
The following table shows the common data types of R [29]:
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Table 3: Data types of R.

Numeric Types Could be integer, numeric or complex.

Text Sequence Type A string is a vector of the type character.

Boolean Values Constant objects, written as TRUE and FALSE.

NA Values NA stands for “Not Available” and is a logical constant for missing 
values. Further reserved NA constants are NA_integer_, NA_real_, 
NA_complex_ and NA_character_.

Vector Vectors are mutable ordered collections of elements, having an 
atomic basic type. The basic type could be integer, numeric, 
Boolean, character, complex or raw. It is possible to attach names, 
to access elements associative.

List List are similar to vectors, but without restrictions to the type (non 
atomic).

Matrix A matrix could be seen as two dimensional array, which consist out 
of vectors of the same length.

Data frame Data frames are lists with additional restrictions and have the 
underlying class “data.frame”. They have to consist out of elements,
equal in length, like vectors, factors, numeric matrices, lists, or 
other data frames. Character vectors will be coerced to factors by 
default.

Factor A factor is an object which could be used to describe the discrete 
classification of a vector. Similar values in this factor will by 
grouped as a level. 

The next figure shows the assignment and exemplary usage of some data types  [29]:
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• Line 1 to 4 illustrates the creation and assignment of a vector to a variable. R allows a
different variant of splicing, which is used in Python. Here a vector could be given, to
define the index which is used to create a subset:
◦ Vector of logical values: All TRUE values are included in the subset, others will be

excluded.
◦ Vector of positive integral quantities: The corresponding values of the given index

will  be  returned  in  the  given  index  order.  Here  the  expression  1:5  creates  a
sequence from 1 to 5. The set has to be in the range of 1 to the length of the
object which is used for sub-scripting.

◦ Vector of negative integral quantities: Here the corresponding will be excluded in
the subset.

◦ Vector with names: Identical to the usage of the positive integral quantities, but
with character strings which has to fit to the names of the values.

• Line 5 to 10 is showing the instantiation of a list with names. Important is here to
remember that single brackets only create subsets, which will be a list in this case. To
access single elements it could be used:
◦ Double brackets around an index number (like in the example), or the name of

the wanted value.
◦ A dollar sign followed by the name of the wanted value (here v_list$color).

• Line 11 to 14, demonstrates the creation of a matrix. The parameters  nrow and ncol

Listing 3.4: Code example from operations on different data types in R.
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could be used to define the number of rows and columns of the matrix. R supports
out of the box a wide spectrum of matrix calculations.

• Line 15 to 23 is showing how a list could be coerced to a data frame. With the help of
the str function, which shows up the structure of the data frame, it could be easily
shown that the character vector also has been coerced to a factor at the creation
time.

3.5.4 Classes

Classes are a central aspect in OOP. In R they mainly define how objects will look like and
act, describe the hierarchical context and relationship to other classes and they are used to
re-reference methods.  There exist  three different class types in R, which enable OOP to
developers. [32] This explanation will only focus on the more established S3 and S4 classes.

S3

By  using  S3  classes  OOP  is  enabled  by  a  simple  generic  function  system.  The  generic
functions take control about which method will be called. For this, typically the class of the
first argument of these functions is used for the method dispatch. 
The classes are more elementary, also in possibilities to define formalities.
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• Line 1 to 5, shows the class definition and assignment through a function. The usage
of a function is not required, but enables the possibility of type checking and of tasks
a constructor in other OOP languages would take care of. To apply inheritance, the
class assignment in line 7 allows also vectors (an example for a vector could be here
class(myClass) =  c(“myClass”, “parentClass”)).

• Line  7,  is  used  for  the  definition  and  assignment  of  the  generic  function  f.  The
function  UseMethod  dispatches the method, by using the class attribute(s) of  the
argument txt. 

• Lino 9 to 12, illustrates how the methods of a class must be named, to be found by
the dispatcher. Here the generic function f is attached to the myClass class.

• Line 14 to 18, are used to show the benefit of using the generic function system. The
print function already exists and developers are now able to adapt an appropriate
method for their class. The function NextMethod in line 17, calls the method for the
next class, using the class vector. In this case the class is set to NULL and the fallback
method print.default is called.

S4

The S4 classes, also known as formal classes, are also using a generic function system like
the S3 classes, but supporting a more precise definition of their structure and environment. 

Listing 3.5: Code example of the usage of S3 R classes.
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The main differences are:
• The definition of a class includes its inheritance and fields.
• The dispatch system allows multiple arguments to find the accurate method.
• The operator @ is introduced to access fields of an object. [33]

• Line 1 to 3 shows the class definition and assignment through a function. S4 is much
stricter as S3, which only uses the class function for a name and the inheritance. The
developer  has  to  define  slots.  These  store  the  information  about  the  names and
possible classes of the fields, that will later be accessible. Further possible arguments
are: 
◦ contains: To define parent classes, where this class is based on.
◦ validity: That makes it possible to introduce validity checks.

Listing 3.6: Code example of the usage of S4 R classes.
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◦ prototype: To define default values for the slots.
• Line 5 to 14 presents how a new generic function is created and adapted in a method.

The field signature in line 10 defines the classes, which should be used for the method
dispatch.

• Line 16 to 21 describes, analog to the S3 example, the usage of an already existing
generic function. Because print is based on S3, show should be used instead. Line 20
also shows the usage of the special @ operator, to access the slots of the object. [32]

• Line 23 is illustrating the usage of the more OOP typical new function, to create the
myClass object.
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4 CONCEPT OF THE GENETIC DIFFERENTIAL EXPRESSION 
PIPELINE

According to the requirements out of chapter  2, the pipeline has been divided into three
independent components. The next two chapters will describe the conception of the two
tools which should be developed to support data preparation steps. They could be used to
transform data to the proper format according to the main application, whose conception
will be described in the third chapter.

4.1 ASSEMBLE COUNT DATA

This section describes the concept of the tool which should aggregate files which include
count data. Its source files should contain already aligned and quantified gene counts, which
are generated with tools like RSEM (abbr. for RNA-Seq by Expectation-Maximization, see
[34]) or HTSeq-Count ([35]). 
The purpose of the program is, to create one assembled RNA-Seq count file, which could be
used together with the corresponding phenotypic file as input for the DEA Pipeline.  

4.1.1 Output from RNA-Seq Methods

In the case of the TCGA sample data (see chapter 3.3 for more information), RSEM was used
for the quantification of the gene and isoform abundances. After extracting the downloaded
archive, results could be found in a subdirectory with the name “Level_3”. [36] 
Every sequenced tissue corresponds to six different files: 

1. <ID>.exon_quantification.txt
2. <ID>.junction_quantification.txt
3. <ID>.rsem.genes.results
4. <ID>.rsem.genes.normalized_results
5. <ID>.rsem.isoforms.results
6. <ID>.rsem.isoforms.normalized_results

The <ID> is here a replacement for a unique file identifier, which could be used to map the
files to the corresponding tissue (with cardinality [1,n]:1), like shown in figure 2. 

Figure 2: ER-Diagram (in Chen notation) showing 
relationship between barcodes and filenames.

Tissue Resulthas

FilenameBarcode

1 1,n
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The tissues also have unique identifiers (in TCGA context called barcodes), which consists
out of 7 alphanumeric groups in the following form:

XXXX-XX-XXXX-YYY-YYY-YYYY-YY

The association between filenames and the barcode of the tissue is described in a file with
name “FILE_SAMPLE_MAP.txt” (see table 4).

Table 4: Exemplary line out of FILE_SAMPLE_MAP.txt from TCGA RNA-Seq data.

filename barcode(s)

ID.rsem.genes.results TCGA-XX-XXXX-YYY-YYY-YYYY-YY

The first 3 parts from the code (marked as “X”), are matching to the patient-barcode, which
is used in the clinical data sets. These data sets containing the corresponding phenotypic
information from the tissue source. The “Y” part is not needed and could be ignored.

4.1.2 Result

The output  from AssembleCounts  should be a tabular  file,  which includes the raw gene
count information of all samples. The genes should be able to be identified per rowname
and the corresponding samples via column labels (see table 7). It should also be possible to
map the phenotypic information gathered with sample data assembling tool, by using the
corresponding identifiers in the table header. 
In the case of the TCGA RNA-Seq data, the files with the ending “.rsem.genes.results” are
containing the raw count information, together with the several gene label (see table 6).

Table 5: Exemplary line out of ID.rsem.gene.results file, with needed gene_id and raw_count 
column.

gene_id raw_count scaled_estimate transcript_id

IGJ|3512 23211.00 0.000447497324805475 uc003hfn.3,uc010ihz.2

Together  with  the  modified  barcode  (without  the  “Y”  part)  from  the
“FILE_SAMPLE_MAP.txt”, all required information to write the target file is now available. 
It should be noted, that the entity-relationship between barcode and patient_barcode is not
always one to one, because in some cases multiple specimen exist.

Table 6: Exemplary output row of the tabular file from the count data aggregation tool.

TCGA-XX-XXXX TCGA-XX-XXXX ...

IGJ|3512 504 3431 ...
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4.1.3 Interface

All file dependent parameters have to be controllable by the user through an interface. The
modification of the barcode is restricted to TCGA data only and shall therefore be optional.

4.2 ASSEMBLE SAMPLE DATA

This chapter includes the conception of the second tool, which should be responsible for the
aggregation of the sample data. 
The content describes the phenotypic information for a sample (in TCGA context stated as
clinical data). Each sample tissue should be listed row-wise, whereby several attributes and
informations are given per column. The outcome from this tool should be a tabular file,
which corresponds to the tool described earlier in chapter  4.1. Both files are ready to use
with the Differential Expression Pipeline. 

4.2.1 Clinical Data Files

The TCGA clinical and biospecimen data files, which were used in the context of this thesis,
are available in Extensible Markup Language (acronym XML) or tabular separated format. 
As input for this tool the tabular files will be used, because they are already close to the
defined output format and need less transformation steps. The XML files are redundant and
could therefore be ignored. 
The  TCGA  data  is  split  by  different  topics,  by  using  separate  files.  All  files  could  be
aggregated through a barcode, which is associated uniquely with the patients clinical data.
But  not  every  topic  has  a  one  to  one  relationship  to  the  sample  tissues,  so  that  it  is
necessary to select files where only one row for one barcode exists, or none (1:0,1). [37] 

Following list was aggregated for the evaluation, shown in chapter 6:
1. nationwidechildrens.org_clinical_patient_skcm.txt
2. nationwidechildrens.org_clinical_follow_up_v2.0_skcm.txt
3. nationwidechildrens.org_clinical_radiation_skcm.txt

The content of the main file (number 1, with patient information) is described in the table
below:
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Table 7: This table is showing a part of one row out of the patient file from the clinical data of 
TCGA.

bcr_patient_uuid bcr_patient_barcode form_completion_date ...

bcr_patient_uuid bcr_patient_barcode form_completion_date ...

CDE_ID: CDE_ID:2673794 CDE_ID:3088528 ...

XXXXXXXX-XXXX-(...) TCGA-XX-XXXX 2014-1-1 ...

4.2.2 Result

Generally the resulting tabular file should contain phenotypic information which is necessary
for  the  analysis.  One  column  has  to  include  keys  which  could  be  used  to  map  the
corresponding column label from the assembled count file. Additionally the content of each
columns should be described with a unique column name (example in table 9). 
Especially for the TCGA files, the first and the third lines of the clinical data are reserved for
additional column information and not needed for the further process (see table 7). 
Therefore it should be optionally possible to remove this lines with the help of the tool.  
Furthermore  it  should  be  possible  to  join  other  files  through the  given  ID  (in  database
terminology they would be “left joined”). In the case of the TCGA data, the main construct
will be built out of the file “nationwidechildrens.org_clinical_patient_skcm.txt” and the ID
will be the patient barcode.

Table 8: Exemplary row from output of AssemblePheno.

bcr_patient_uuid bcr_patient_barcode form_completion_date ...

XXXXXXXX-XXXX-(...) TCGA-XX-XXXX 2014-1-1 ...

4.2.3 Interface

The parameters should, analog to AssembleCounts, not be dependent to the TCGA data.
See section 4.2.3 for more information.

4.3 DIFFERENTIAL EXPRESSION ANALYSIS

This  chapter  describes the high level  concept  of  the main application of  the Differential
Expression  Analysis  pipeline.  The  application  could  be  further  divided  into  multiple
segments, grouped by their function. All of these are oriented on a typical analysis workflow
and should be dynamically controllable by the user. The aim is to offer more experienced
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users the opportunity to create more complex experiments, by leaving also the possibility
for simple standard setups. 

The process steps are the following:

1. Data Import
2. Filter Count Data
3. Data Quality Assessment
4. Differential Expression Analysis
5. Result Comparison

In some cases, it could be necessary for the user to repeat several steps, until he gets a
result that is more satisfying to his assumption. For example, it is not obviously how the
dimensions of the count data will change, in respect to the set filter parameters. For this
case, the user should be able take multiple loops between point 2 and point 3. 
For the sake of efficiency, the output data of each process should be able to be stored. The
simplified flowchart shown in figure  3,  represents the resulting pipeline scheme and the
additional entry points of the process steps. 

4.3.1 Data Import

The first process step should adapt the source data to the pipeline. This consist out of one
tabular  file  including  the  count  data  of  each  gene  and  another  one  that  contains  all
necessary phenotypic information about the sequenced samples. Due to the requirements
in chapter 2, the files should already be in an appropriate format, that is illustrated in figure
4. 

Figure 3: Simplified flowchart which describes the process chain for the differential expression 
analysis pipeline (using norm DIN66001).
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More  information  about  the  file  contents  is  given  in  chapter  4.1 and  4.2,  where  the
conception of the assemble tools is described. 

Data Type Detection

According to section  2.1.3, it is necessary to detect missing values in the sample data. This
would also be the first process step, which has to be absolved before a data conversion
could be applied. For the task of this pipeline, it is not relevant to cover all possible data
types of R. The focus should rely on the following ones:

1. Factor
2. Numeric
3. Date

It is possible to convert numeric values and dates into factors without problems, but not
vice  versa.  This  in  return  means,  that  every  column  that  should  be  converted wrongly,
should be a factor in the end. 
The downside on factors, is the detection of missing values (NA's). The risk to loose data

Figure 4: Visualization of the relationship between count data and sample data file. The 
schematic is oriented on the SummarizedExperiment class [SUME01], which should be used at 
the implementation.
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through  a  coded  assumption,  which  coerces  factor  levels  into  NA  values  is  too  high.
Therefore an optional parameter should exist, which is making it possible for the user to
manual set several NA strings to support the conversion.
Through this convention, it should be only necessary to detect numeric, or date values. To
do so, given thresholds could be used:

• The upper bound threshold, which defines the percentage of occurrences a data type
should have  to assume this data type for the whole column. All found words should
be set as NA values.

• The lower bound threshold, that defines the minimum amount of occurrences a data
type  should  have,  to  make  further  and  more  intensive  investigations  about  the
uniqueness of the other values (see NA tolerance below).

• The NA tolerance, which only should be used if the upper bound was missed, but the
lower bound was reached. It defines how many different NA words are allowed per
column and is compared to the uniqueness of the data type foreign values.

This combination of three thresholds makes it possible for the user to adjust the detection
optimally to the precision of the sample data. Furthermore efficiency is maintained, by using
the lower bound threshold.

Selection and Filtering

This section is about the filtering and selection of phenotypic data. The conception of the
filter for the count data is described in chapter 4.3.2.
The  constellation  of  the  groups  which  should  be  tested  against  differences  in  gene
expression is an important preparation step. The idea this thesis follows, is to coerce a user
given string to a Boolean expression. The string should already consist out of the column
name (or position) and one or multiple values. The connection between each word should
be established by logical operators. The resulting expression could then be used as index for
a given table, returning only the rows of interest.
The  columns  of  the  responding  table  have  to  cover  all  design  formula  attributes  at
minimum. This means that further columns will not be necessary and should be removed, to
save memory space. The user should be able to switch between manual selection, which is
for example recommended if the aim is only to produce principal component analysis plots,
or  automatic  selection  of  the  sample  columns  through  a  given  formula.  One  or  more
columns should be selected through the column name or the column number. 

Control Plots

To get some feedback about the current selected and filtered sample data for the user it
should be possible to generate generic bar charts or box plots. 
In the case of bar charts, the data for the x-axis should be generated out of a given column.
The values of the y-axis, which are reflecting the occurrences of each x-axis level, has to be
calculated automatically. 
For box plots a factorial value should be able to be used with the x-axis, similar to the bar
chart.  But  additionally  a  column name for  a column with numeric  content is  needed, to
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generate the boxes of every level stated on the x axis.

4.3.2 Filter Count Data

There is some discrepancy about the necessity  of the need to filter RNA-Seq count data
between the user guides of the packages edgeR, DESeq2 and limma. This is caused through
some  implemented  automatism  in  DESeq2,  which  filters  independently  on  the  mean  of
normalized counts (see [38], p. 8).
However,  filtering  genes  with  a  low  count  across  all  samples  is  recommended  by  all
packages. This preparation step saves memory and will speed up the analysis calculations.
This thesis is following the idea out of the limma and edgeR package documentation that
instead of using only one threshold for the minimum count, includes the calculation of the
count-per-million (abbr.:  CPM)  of  every  gene  per  sample.  Furthermore,  also  a  group
dependent threshold is used.
The CPM is calculated similar to percentage, with the only difference that million is used
instead of hundred:

CPM sample=
count sample

counttotal

∗106

For example, two groups should be tested against differential expressed genes. One group
consist out of 12 samples and the other out of 9. Through the calculation and the usage of
two thresholds, it is now possible to let genes pass through, that have 9 times a count of
zero but are otherwise highly expressed.

4.3.3 Quality Assessment

It should be possible for the user to inspect the count data under the aspects of data quality
assessment and quality control. In context of this thesis and the related work the definition
of  the  term  quality  is  fitness  for  purpose.  The  purpose  is  the  detection  of  differential
expressed  genes  and  the  aim  is  to  discover  samples,  whose  experimental  treatment
suffered from an abnormality which biases negatively the detection (similar to the definition,
used in the DESeq2 manual  [39], p. 20). 
Two  possible  ways  to  check  the  quality  of  the  count  data  are  the  usage  of  clustering
methods and the principal component analysis. To achieve better results it might be useful to
work with transformed count data. One common choice for the transformation method is
the logarithm. DESeq2 is also offering two alternatives which transform the count data with
respect to the library size. (see [39], p. 17)
The term library size (or sequencing depth) is used for the result of the sum of all  gene
counts per sample (see [39], p. 10).

Log2

The binary logarithm is one approach to transform the count data. Since some genes could
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have a count of zero, it is recommended to add a pseudo-count. In this thesis we use the
following formula y=log(n+1) . (see [39], p. 18)

Regularized Log Transformation

The input for the regularized log transformation function (abbr.: rlog) should be count data
with  attached  estimated  size  factors  and  dispersion  parameters  (further  information  in
chapter 4.3.4, under 'Estimation of Size Factors' and 'Estimation of Dispersion' for DESeq2).
To accomplish blind estimations, which means that no information about the experimental
groups is used within the calculations, the design formula is replaced with an intercept only
(formula =  ~ 1). The model fitting and therefore the results are based on the log2 scale.

Variance Stabilizing Transformation

The variance stabilizing transformation (abbr.: vst) makes, in the case of parametric fitted
counts (the default), usage of a closed-form expression to transform the normalized count
data.  Large  counts  become  asymptotic  to  the  output  of  the  logarithm  to  the  base  2.  
The rlog function is more robust in the case when size factors vary widely. ([39], pp. 48, 49)

Control Plots

With  the  usage  of  the  normalized  count  data  and  the  help  of  clustering  or  principal
component methods, several plots could be produced. This should be possible, analog to
the other process steps, independent from the process.

4.3.4 Differential Gene Expression Analysis Packages

The section contains the conceptional integration of the analysis packages into the pipeline.
Because of that the most packages are written in R, this part of the pipeline should be also
written in this programming language.
The  initial  implementation  will  focus  on  the  adaption  of  three  packages  with  different
underlying statistical approaches. The decision was made to use “edgeR”, “DESeq2” and
“Limma”, which besides their difference to each other, are also having the best download
statistics according due Bioconductor (see [40]). 
To preserve modularity  and a  clean code structure  at  the implementation phase,  it  was
necessary to concept a wrapper, that could be attached to each package. For this, similar
process steps which are an integral part of the whole analysis, had to be uniformly grouped.
These stages will be described in the following sections.

Initialization

At the initialization step, all  necessary information for of the analysis should be used for
instantiation of the package depending object. A typical experimental setup consist out of
the following parameters:
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1. Count data (optional filtered)
2. Phenotypic data (optional filtered and with necessary columns only)
3. Formula (describing the groups, using the columns from point 2)
4. [optional] Contrast (a vector, that specifies the hypothesis of interest)

The given formula is correlated with the phenotypic data and together they are defining the
sample groups (also called replicates). Typically the result of this correlation is saved within a
binary design matrix (also known as model matrix).
The contrast has to be a vector with the length of the coefficient count. Each position in this
vector will then be used as factor of the corresponding coefficient (see [41], p. 28).

Estimation of Size Factors

The instantiated objects could be now used for the respective methods that are in charge of
the count data normalization process. The task is handled differently across the packages
and in most cases specialized in respect to the individual statistical model. 
In  the  following  table,  the  terminology  and  standard  methods  of  the  packages  are
described.

Tabelle 9: Estimation of Size Factors: Methods and Terminology.

Package Terminology Result

edgeR Normalization Factor Calculates the trimmed mean of M-values over all gene 
counts per sample (also called library) to a reference 
sample. If not set by user, the reference will be the sample
whose upper quartile is closest to the mean upper quartile.
[42]

DESeq2 Size Factor Divides each gene count through the corresponding count 
of a reference sample, which is build out of the geometric 
mean per gene over all samples. The median of all 
quotients is the result for the library depth. ([39], p. 19)

Limma See edgeR Limma is making use of the edgeR normalization 
approach.

This  thesis  and  the  related  implementation  will  use  the  “size  factor”  term  for  the
normalization factors of the library sizes (see also [41], p. 13).

Estimation of Dispersion

While the estimation of the size factors could be used to normalize differing sequencing
depths  between  samples,  or  other  sample  independent  biases,  the  estimation  of  the
dispersion could be used to account inner sample group variations. One possible cause of
inter-library variation between replicates is the biological variation. ([41], p. 15) 
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Typically this variation is moderate between genetically identical animals, but can be very
large in case of human samples [43]. 

edgeR

The  package  edgeR  serves  three  different  approaches  for  the  differential  expression
analysis. One former exact method, also called classic edgeR and the latter, which are using a
Generalized Linear Model, mostly referred as glm edgeR ([41], p. 5).

1. classic:  The  classic  approach  makes  usage  of  the  quantile-adjusted  conditional
maximum  likelihood  (abbr.:  qCML)  method.  This  method  could  only  be  used  for
pairwise comparisons between groups. ([41], p. 17) 

2. glm: The glm methods allow experiments with multiple factors by using the Cox-Reid
profile-adjusted likelihood (abbr.: CR). So called tag-wise dispersion estimation is also
supported, which weights the estimated gene counts individually. ([41], pp. 18-19)

DESeq2

Similar to edgeR, this package uses the CR method and calculates the dispersion tag-wise
(see [44], p. 16).

Limma

Limma uses a linear model, which could be applied on data that has been generated with
microarrays. Because of the different underlying distribution to RNA-Seq count data, it  is
necessary to adjust the data in a previous step. [45]
Voom (acronym for variance modeling at the observation level) normalizes the counts in
respect to the library size by transforming them to log-counts per million (abbr.: log-cpm).
Furthermore it modifies limma's empirical Bayes procedure, to incorporate a mean-variance
trend. Besides that, the mean-variance trend is used to generate precision weights for each
individual normalized log-count. 
The result could now be used with the limma pipeline, or any other microarray pipeline that
is precision weight aware. [46]

Fitting and Testing of the Statistical Model

This stage includes all steps that are necessary for the alignment of the model to the read
counts for each gene. Additionally the elevation of gene-wise statistical tests for a given
coefficient or coefficient contrast, is also included in this stage.

edgeR

1. classic: With the knowledge about the conditional distribution for the sum of counts
in a group, p-values that have a probability less than the probability under the null
hypothesis of the observed counts could be calculated. ([41], p. 18)
Like already written in the last section, only pairwise comparison can be made with
the classic methods. Through this restriction, the usage of a contrast parameter is
not possible. Therefore the classic mode will  be excluded in the initial part of the
implementation and not further described in this thesis.

2. glm: EdgeR serves two generalized linear model approaches.
1. The usage of a likelihood ratio test for  one or  more coefficients in a negative

binomial generalized log-linear model.
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2. Similar method, except that it uses quasi-likelihood (abbr.: QL) for the dispersion
values and replaces likelihood ratio tests with empirical Bayes QL F-tests ([44], p.
67). The advantages are, that this method also reflects uncertainty in estimating
the dispersion for each gene. Also it provides a more robust and reliable error
rate control, in the case of a low replicate count. ([41], p. 20)

DESeq2

The DESeq2 package makes it also possible to decide between two methods:
1. As standard method, DESeq2 uses Wald p-value calculation by testing the estimated

standard error of a log2 fold change against zero.
2. The additional method offered by the package uses a likelihood ratio test (abbr. LRT),

similar to that which is used by edgeR. ([38], p. 26)

Limma

This package fits the linear model with the usage of the least squares method as standard
and computes empirical Bayes moderated t-statistics for the hypothesis test ([47], pp. 98
and 60).

Multiple Testing and p-Value Adjustment

At the final stage, a classification of genes in respect to their significance should be made
using the data from the previous steps. The standard false discovery rate (abbr.: FDR) has to
be corrected with the Benjamin-Hochberg (abbr.: BH) procedure.

Output

To check the data quality, it is a common task to look at the data which has been generated
in the “Estimation of Dispersion” stage. Special plots are offered by the packages, which are
made exactly for this control step. With the help of this plots, a decision could be made to
change the experiment parameters (for example the filter for the count data), or to step
forward to the next stages and complete the analysis. 
To enable the package depending plots, two entry and exit points have to be integrated in
the package depended part of the pipeline (see flowchart in figure 5). 
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At the end of a differential expression analysis, a result file for every used package should
exist, containing the following exemplary data as minimum:

Table 10: Exemplary Differential Expression Analysis output of a package.

log2FoldChange pvalue padj

LAMC2|3918 4.073 3.868e-09 5.133e-05

The terminology of the column labels should be consistent between packages and altered if
necessary, by using the following list as orientation.

Tabelle 11: Terms with descriptions for the result files.

Term Description

log2FoldChange Logarithmic fold-change between the conditions.

pvalue Probability value from test statistic (Abbr.: p-value).

padj Adjusted p-value.

baseMean Mean of normalized counts of all samples.

Figure 5: Flowchart of the Differential Expression Analysis conception.(using norm DIN66001)
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4.3.5 Comparison of Results

Another interesting aspect besides the result of every single package, is the intersection of
significant genes between the packages.
For  that  the  user  should  have  the  possibility  to  create  one  table  with  the  union  of  all
differentially  expressed  genes  per  package  ( GenesedgeR∪GenesDESeq 2∪Genes limma )  and
another table with only the intersection ( GenesedgeR∩GenesDESeq2∩Geneslimma ,  similar to an
inner join). For this, the gene labels have to be used as keys. 
The same strategy should also fit for the creation of the Venn-diagram.
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5 IMPLEMENTATION OF THE DIFFERENTIAL GENE EXPRESSION 
ANALYSIS PIPELINE

In this chapter, the implementation phase of the three tools is described. 
The first  two tools,  which have the task to aggregate the count and sample data,  were
written with the programming language Python. Python allows a fast and straight forward
development and has a similar underlying function principle like R. This measure also clearly
divorces the previous data preparation steps physically from the main application. Should
other assembler tools be necessary in the future, they could be implemented parallelly to
the two scripts and later chosen conditionally to the type of the source files. 
As already mentioned in the concept chapter, it was evident to stay as close as possible to
the most important part of the whole pipeline, the differential expression analysis packages.
Therefore the main application was written in R programming language. 

While all kinds of user interfaces are integrable into the three tools, in the related work of
this thesis an exemplary commando line interface was used. As a result, the saved time from
the  reduced  additional  workload  that  would  be  necessary  by  using  most  of  the  other
interfaces, could be used for more essential components. Furthermore the commando line
could also be used by web-based platforms (for example Galaxy [48]). 

5.1 ASSEMBLERNASEQ2

The script assembleRNAseq2 imports the following Python modules (without modules that
are required for tests):

• os: For system dependent tasks like file handling.
• csv: Serves features to read and write spreadsheets.
• re: Enables regular expression operations in Python.
• argparse: The classes ArgumentParser and RawDescriptionHelpFormatter supporting

usage of a commando-line interface.

It mainly consist out of four important functions, that will be described in further detail in
the next sections.

5.1.1 main

The main function currently includes the commando-line interface of the assembleRNAseq2
Python script and will be started only if it is called as main program by the interpreter.



34

The usage of the ArgumentParser class, helped a lot by the assignment and control of the
altogether 14 possible arguments or options.
The  ArgumentParser object  automatically  generates  help  messages and parses the  user
given arguments by using a previously defined rule set. The user arguments as default will
be  divided  into  two  groups.  The  optional  arguments (see  line  7  to  11  in  listing  Fehler:
Referenz nicht gefunden), which could be supplied by the user after a given option flag and
positional parameters (see line 12 to 19 in listing Fehler: Referenz nicht gefunden), which will
be evaluated through their position relative to the context.

• Line  3  to  5,  illustrates  the  instantiation  of  an  ArgumentParser  object.  Here  a
description is supplied and will be shown by the automatic generated help, using the
-h or - -help flag by the execution. Also the class RawDescriptionHelpFormatter which
handles the formatting and an epilog with examples was added.

• Line 7 to 11, is showing how the method  add_argument is used to add a positional
argument. As default the count of positional arguments is estimated out of the given
input  type  using  the  type parameter.  However,  in  this  case  the  only  first  given
argument is stored in an object field called “source_path”, which is equal to the dest
parameter. Furthermore, metavar is used for the typical usage text of the script and

Listing 5.1: Usage of the ArgumentParser in assembleRNAseq2 script.
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the help attribute could be used for a short description. In that description a format
specifier could be used to substitute a given default parameter (here “none”).

• Line 12 to 19, describes an added optional argument. The parameters are analog to
the parameters explained above.

• Line 22, is used to show the assignment of the object with the parsed attributes.
• Line 24, here the source_path attribute is assigned to a variable for further usage.

(see also [49])

5.1.2 assemble

The function assemble is used for all steps that are necessary to assemble the count data
files. The functions __checkIntegrity and __checkConsistency are also included and could be
activated by a user given Boolean parameter. By default all parameters fit to the TCGA data,
but could of course be changed by the user. 
At first, the source files have to be selected in the given directory. For the selection of the
source files, the first column of FILE_SAMPLE_MAP.txt (see chapter 4.1.1) is checked against
a regular expression (default:  ^unc\\.edu\\..+\\.rsem.genes.results). Matches will be stored as
key in a dictionary with the corresponding patient barcode as value. The patient barcode is a
substring of the given barcode in the second column (the X part with a length of 12). 
The resulting dictionary includes now all  necessary files with their  corresponding patient
barcodes. As next, the files could be optional checked for completeness and correctness
using the __checkIntegrity and __checkConsistency function. 
If  the checks were successful,  every file is  read and the corresponding column with the
count data is saved to list. Additionally, on the first run the defined column which contains
the gene labels is also stored to a list. The DictReader class from the csv module allows an
associative or numeric column selection, which in return offers the user a higher flexibility. 
At the final step, the writer method from csv is used to insert the cached information into
the resulting file. The first row has to be the header, so the list of the patient barcodes with
a leading empty column is used for the insertion. The remaining information is inserted by
using a loop over the gene labels (rows) and another which iterates across the count data of
each sample (columns).

5.1.3 __checkConsistency

This  internal  function  is  making  use  of  the  dictionary  which  was  generated  out  of  the
information of FILE_SAMPLE_MAP.txt by the function assemble. It is using the given source
directory and the filenames (keys), to check if the files exist and are legit.
The similar function is also made available externally (checkConsistency), but this one has to
create the dictionary again. 
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5.1.4 __checkIntegrity

The internal function __checkIntegrity is also making usage of the generated dictionary from
assemble, like in __checkConsistency. Here the key column (the gene label) of the count data
files is checked for integrity over all samples. This is necessary, because a wrong order will
not  be  detected  by  the  generation  of  the  count  data  list  in  assemble  and  would  lead
consequently to wrong results.

5.2 ASSEMBLECLINICAL

The Python script assembleClinical uses the same module basis like assembleRNAseq2 which
was described in the last chapter. It allows the concatenation of multiple files to one base
file by using a key (see chapter  4.2.1) and has the following restrictions:

1. Every column label has to be atomic, otherwise:
1. In the same file, earlier entries for that column will be overwritten.
2. In a different file, ambiguous entries will be ignored.

2. The  ID  (patient  barcode)  has  to  be  atomic,  otherwise  earlier  entries  will  be
overwritten.

3. The  first  given  file  will  build  the  basis  of  the  aggregation  and has  to  contain  all
necessary ID's.

The  script  consists  out  of  a  main  function  that  contain  the  commando-line  interface
functionalities (see 5.1.1 for more information) and an assemble function which is explained
more detailed in the next section.

5.2.1 assemble

Otherwise than in  assembleRNAseq2, all source files are given by the user and are checked
for existence directly. 
After  this  control  step,  a  list  with  unique  fieldnames  and  a  dictionary  with  the  patient
barcode as key and a further dictionary as value is created. The further dictionary includes
the  fieldnames  and  the  corresponding  values.  Fieldnames  that  are  no  keys,  could  be
extended with the usage of a user given prefix. This is done by changing the fieldnames field
of the DictReader object.
Finally the list and the values of the dictionary, whose are dictionaries themselves, could be
used to write the new file with the use of the DictWriter class.

5.3 GENETICANALYSISPIPELINE



37

The advantage by the implementation of the DEA part, was to preserve a high reusability of
the source code by retaining the possibilities of the used analysis packages. 
One way to make the future developers life  easier  was to create an own package.  This
decision has advantages for the user as well. For example it is now possible to use the install
function of R, which also checks for dependencies. Furthermore the documentation could
be accessed by using the help function. 
The package with the name GeneticAnalysisPipeline consist out of 4 classes and mainly 21
functions (without the generic functions).

5.3.1 Environment

The R package was developed under the operating system Microsoft Windows 7 with the
IDE  Eclipse  and  the  installed  plug-in  StatET.  Furthermore  Rtools  and  MiKTEX  had  been
installed, which include necessary tools for the package compilation.
Also important for the development, was the installation of the following R packages:

• devtools:  Includes  a  set  of  development  tools,  which  for  example  allow  the
developer to load the package quite similar like it would has been installed already
and initialized by the library function [50].

• roxygen2: Supports creation of the R documentation files (filename extension Rd) by
using in-code documentation [51].

• testthat: Could be used for unit tests creation and evaluation [52].

5.3.2 Classes

Another approach to serve a better usability of the package and reusability of the code, was
the introduction of four own classes. Therefore the S4 class system (see chapter 3.5.4) was
chosen, because among other things, it has an integrated validation check for objects. 
Based on the classes it was also possible to define the outcome of several pipeline stages
precisely and to react dynamically if their objects are given to a function.

AnalysisDataSet

The class AnalysisDataSet was created to serve as container for the given input data. More
precisely, it should contain the superset of the count and sample data. 
For  that,  it  inherits  the  RangedSummarizedExperiment class,  whose  superclass
SummarizedExperiment was made for this kind of purpose (class diagram shown in figure 6).
The  developers  of  the  package  DESeq2  followed  already  a  similar  way  by  creating  the
DESeqDataSet class. 
RangedSummarizedExperiment is more specialized in storing genomic coordinates and was
chosen  because  of  a  name  discrepancy.  The  new  SummarizedExperiment class  of  the
SummarizedExperiment  package  currently  is  named  SummarizedExperiment0,  but  will
renamed  as  soon  as  all  existing  relations  to  the  old  SummarizedExperiment of  the
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GenomicRanges package are cut. 
SummarizedExerpiment0 uses the virtual  Vector class from the S4Vector package as parent
class, which has an extended semantic compared to the origin vector of R. Also from this
package were used the DataFrame and SimpleList classes as data type for the slots colData
and assays. [53] 
The AnalysisDataSet class was modified to the needs of  the pipeline.  Multiple validation
checks had been implemented additionally, to erase possible errors due incorrect data input.
For the sample data a DataFrame or data.frame is expected, having samples per row and
sample ID's as row names. On the other hand the corresponding count data has to be an
integer matrix, with samples per columns and the sample ID's as header (conform to the
preparation step, see figure Fehler: Referenz nicht gefunden).

Validation checks for the count matrix:

1. Count data is mandatory by object creation.
2. The count  data has to be supplied in  an integer  matrix.  Some used packages do

generally  not  support  floating  point  numbers  (ambiguous  gene  counts).  This
restriction should keep this into the users awareness.

3. Count data matrices with negative numbers are not allowed.
4. Count data matrices with NA values are not allowed.
5. Column names for the count data matrix are mandatory.

Validation checks if sample data was supplied:

1. Row number of sample data has to be equal to column number of the count data
matrix.

2. The row names of the sample data have to match the column names of the count
data matrix.

Furthermore two getter and setter methods had been attached to the class. A  countData
method,  which  allows  to  set  and  get  the  attached  count  data  matrix  and  likewise  a
sampleData method that allows to easily access and change the DataFrame object of the
sample data.
The  constructor  of  the  class  could  be  used  with  an  object  which  inherits  from  the
SummarizedExperiment class, or by using the AnalysisDataSetFromMatrix function. 
Recommended for the creation is the function createAnalysisDataSet, which is the first stage
in the R pipeline and will be explained in the next section.
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AnalysisInfo

After the superset was successfully transformed and saved with an AnalysisDataSet object,

Figure 6: This UML class diagram shows the inheritance between SummarizedExperiment0 and 
the AnalysisDataSet. Only the most relevant methods and slots are listed. Furthermore the 
inheritance between SummarizedExperiment0 and the Vector class is omitted.

 + rowRanges(  in x: RangedSummarizedExperiment,   out rowRanges: GenomicRanges)

AnalysisDataSet

 + sampleData(  in object: AnalysisDataSet,   out sampleData: DataFrame)
 + countData(  in object: AnalysisDataSet,   out countData: matrix)

SummarizedExperiment0
 + colData: DataFrame [1]
 + assays: Assays [1]
 + elementMetadata: DataFrame [1]
 + rowRanges: GenomicRangesORGRangesList [1]

 + colData(  in x: SummarizedExperiment0,   out colData: DataFrame)
 + assays(  in x: SummarizedExperiment0,   out assays: SimpleList)
 + assay(  in x: SummarizedExperiment0,   out assay: matrix)

RangedSummarizedExperiment
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it is now necessary to create a subset from this data. This subset has to fit to the hypothesis
that the user wants to show with the analysis (more in chapter 4.3.1, Selection and Filtering).
For this important step, also a new class was generated. The class AnalysisInfo, consists out
of the following slots:

1. time: A character vector which could include the timestamp of the object creation.
2. name:  Also  a  character  vector,  which  makes  it  possible  to  store  a  name  for  the

analysis.
3. formula:  The  formula  slot  has  to  contain  the  formula  of  the  analysis.  A  formula

represents the variables and their correlation that will  be used with the statistical
model.

4. model:  In  the  model  slot,  the  model  matrix  should  be  stored,  that  could  be
constructed out of the formula and the sample data.

5. group: Groups could also be created by the concatenation of all rows in the sample
data of the environment. This could be used for the quality assurance.

6. contrast: The contrast has to be a list with numeric vectors. A contrast is defining the
hypothesis, by using the model matrix.

7. envir:  The  envir  slot  contains  an  AnalysisDataSet  object,  which  contains  only  the
information relevant for this analysis.

Like  in  AnalysisDataSet,  the validation is  checked by  creation and data  assignment.  This
guarantees, among other things, that the contrast vector fits to the model matrix which on
the other hand has to fit to the given formula  and whereas finally  has to match to the
attached sample data.
If missing, the constructor automatically generates the group out of the sample data from
the  AnalysisDataSet object  which  is  stored  in  the  slot  envir.  Also  the  design  matrix  is
generated  by  using  the  model.matrix function,  which  is  available  through  the  standard
packages of R. Additionally a missing time would be set by the  date function and a  name
build out of the formula and the time.
It is also important to note that the levels of the factors in the attached sample data are
checked  against  existence  and  cleaned  if  necessary.  Old  levels  could  be  remained  by
previous filtering steps, since factor levels are not updated automatically by R.
The object could be created directly or by using the createAnalysisInfo function. 

QualityAssuranceResult

To  store  the  results  of  the  quality  assurance  part  of  the  pipeline,  the  class
QualityAssuranceResults was created. This container has the two slots  method and  result.
The method slot could store a character vector, which should contain a string representation
of  the  used  normalization  method.  The  result slot  on  the  other  hand  should  store  the
outcome of this method in form of a count matrix.
The object could be created manually or by using the function runQualityAssurance.
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5.3.3 AnalysisResult

The class  AnalysisResult could be used as container for the results of the DEA pipeline. It
consist out of the four following slots:

1. name: A character vector which has to contain the identifier of the used package.
2. prioriObjects: Has to be a list that should contain all necessary information for the

plotPrioriObjects function.
3. posterioriObjects: This slot should contain a list with a further list, which includes all

necessary objects for the plotPosterioriObjects function per result/contrast.
4. result: The result slot should contain a list with all normalized results.

The validation check of this class ensures that every element in each list has a corresponding
name. Further, if the list at the slot posterioriObjects has entries, the length must be equal to
the list attached at the result slot.
Like in the other classes, all slots could be accessed through defined methods with an equal
name.
Typically the object should be generated by the function runDifferentialExpressionAnalysis.

5.3.4 Functions

This section describes implementation of the most important functions of the DEA pipeline.
They should support the user to create objects, tables and plots through a high amount of
automatism.

createAnalysisDataSet

The function createAnalysisDataSet was implemented to support the user by the creation of
the AnalysisDataSet object. For that, the path to the sample and count data file and several
file customizations has to be given by the user.
If installed, the faster  fread function of the  data.table package is used, to read the count
data file, otherwise the read.table function takes place from the default package utils.
The column names are checked for uniqueness, in case they are ambiguous, the user would
be warned and only the first occurrence of the concerning names would be remained. Row
names are also checked against duplicates by using the function anyDuplicated. But here, an
error would be thrown as soon a duplicate is detected. After coercing the data.frame object
to a matrix, the data type is checked and the function would be stopped if it is not numeric
(means it is also not integer).
For this function, the sample data file is also mandatory. The user can enable the function
detectDataType (explained in the next section) by a Boolean value. Otherwise the file is just
read  via  read.table.  The  ID's  are  checked  against  duplicates,  by  using  the  parameter
keyColSampleData, which should contain the corresponding column name or number. 
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Here ambiguous ID's would lead to an error, because whereas duplicate counts per sample
could  be  explained  through  multiple  sequencing  processes  of  a  tissue,  phenotypic
duplicates are uncommon and should be avoided. Finally the values are attached as row
names to the data.frame.
Both  objects  are  now  ready  for  the  alignment.  Thereby  a  Boolean  map  is  created  by
comparing the column names of the count matrix against the row names of the sample
object. Losses on both sides will  throw warnings, which contain the concerned ID's.  This
measure should support the user by detecting and eliminating faulty data rows.
At the end,  the matrix  is  coerced to integer,  if  necessary.  A warning is  thrown and the
fractional digits are cut off by changing the storage mode.

detectDataType

The  function  read.table in  R  already  detects  multiple  data  types  by  using  the  function
type.convert internal. The first data type which could store all not missing values (unequal
NA) will  be  chosen.  How explained in  chapter  4.3.1 in  section  Data Type Detection,  the
problem to solve is more to detect NA values.  These detected values could be given to
read.table via na.strings parameter. Of course, detected data types could also help to speed
up the next read.table call by supporting the classes with the colClasses parameter. [33]

At  the  beginning  of  the  function,  the  table  is  read  commonly  by  using  the  read.table
function.  A vector  with the name  colClasses is  created which  should store  the detected
classes.  Additionally  a  vector  naStrings is  created,  if  not  already given  by  the  user.  This
vector should store all detected NA strings.
A loop iterates over all columns of the data.frame object. Now the datatype of the column is
checked:

• Numeric: The  column  seems  to  have  no  NA values,  or  they  have  been detected
correctly  already.  The  column  class  will  be  stored  in  colClasses and  the  iteration
proceeds.

• Integer: Here  the  procedure  is  similar  like  it  was  by  the  numeric  class.  Integer
columns should be coerced to numeric by the next read and to do so, “numeric” is
stored into the  colClasses vector. This reduces the chance of problems, caused by
differing data types.

• Factor:  A  factor  could  also  be  a  wrongly  detected  numeric  with  NA  strings.
Furthermore date formats are not recognized by the read.table function and it could
also be a date.

The factors need to be checked more in detail.  Because the amount of dates is properly
lower than the amount of numerics, the former are checked first. 
For this approach, the regular expression “^[-+]?([0-9]*\\.[0-9]+$|[0-9]+$)” is used against
each factor level  (see line 3 to 5 in listing  5.2).  The proportion of non numeric values is
calculated by subtracting the result  of  the length of  the vector with values that do not
match the expression divided through the row count of the data.frame from 1 (see line 7 to
9).
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The  resulting  value  prop_match has  to  be  higher  or  equal  the  mentioned  upper  bound
threshold which could be given by the user. If this is the case, “numeric” is added to the
colClasses vector,  the  detected  strings  are  added  to  the  naStrings vector  and  the  loop
continues with the next column.
Otherwise the values have to be greater equal to the set lower bound threshold, or will
checked against the date data type.
In the former case, the uniqueness of the detected non-numeric values is tested. Therefore
the unique function is used on the factor level indices (see listing 5.3, line 3). This approach is
faster as it would be by using the function directly on the factor (integer vector instead of
character).  Now the proportion could be calculated by dividing the count  of  ambiguous
values through the length of the origin factor (line 10 in the listing below). 
The result is compared against the naTolerance value, that could be also given by the user. If
it is greater or equal to the parameter, the “numeric” is added to the colClasses vector and
the iteration proceeds.

If,  at  this  point,  the  class  is  still  not  detected,  the  column  is  tested  against  a  regular
expression  that  represents  a  date.  The  several  steps  are  similar  to  the  steps  already

Listing 5.2: Detection of non-numeric values out of the detectDataType function.

Listing 5.3: Estimating the unambiguity of non-numeric values in the detectDataType function.
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explained above and will therefore be omitted.
Finally,  if  a  date  was  detected,  “forceDate”  is  added  to  the  colClasses list,  otherwise
“reduceFactor”. Both are own classes that have special conversion methods. They are made
for the detectDataType function only and will not be exported by the package. 
The reduceFactor class replaces NA values by the usage of the naStrings vector. This step is
necessary,  because  the  read.table expects  no  whitespaces  in  na.strings and  trims  these
automatically in case of numeric columns, but not in case of character columns.
The  forceDate class  is  necessary,  because  the  as.date function  does  not  recognize  date
values  automatically.  To  match  the  user  given  format,  the  values  have  to  be  coerced
correctly.

At the end, the new data.frame object is returned by the detectDataType function.

createAnalyisInfo

The function createAnalysisInfo was made to support the user by selecting and filtering the
data stored in the  AnalysisDataSet object. The resulting  AnalysisInfo object is a container,
which includes all relevant information for every further analysis step.
At the very beginning of the function, the variables of the parameter formula, which should
include the formula object, are extracted by using the standard function all.vars and stored
in a vector. 
If the length of this vector is greater zero, the variables are tested for existence in the given
sample data of the AnalysisDataSet object. If the test fails, the function is stopped with an
error. Otherwise the variables are used to select the column of the new  data.frame (see
listing 5.5, line 11). No further selection is needed and a Boolean variable skipSelection is set
to TRUE. Furthermore, if given by the user, the reference value of the factor according to
the last variable is set (line 14 to 17).

Listing 5.4: Coercion by the usage of own classes in the detectDataType function.
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If otherwise the length of the vector was zero (how it would be for example by the formula
~ 1), the  skipSelection variable is set to FALSE. In the case of a given parameter  selection,
which  should  be a  character  vector,  the parameter  is  used to  create  the  subset  of  the
sample data.

Now the data is ready for filtering. For this purpose, the user could supply the parameter
condition. This character vector has to use the syntax of R for the logical conjunctions. All
columns will be fully qualified automatically by using a regular expression (see listing 5.6, line
3 to 10). After that, the resulting string is parsed and evaluated by using the R functions
parse and  eval (shown  in  line  13).  The  outcome  is  a  Boolean  vector,  that  indicates  the
positions of the filtered rows by TRUE values. In that case the given condition creates NA
values,  a  warning is  thrown which includes information about  the concerned rows.  This
vector  is  then  used  for  the  selection  (shown  in  line  19).  The  underlying
SummarizedExperiment method  assures,  that  the  count  matrix  and  the  sample  data  is
aligned respectively.

Listing 5.5: Selection of the sample data in the function createAnalysisInfo.
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The createAnalysisInfo function also allows to generate a pseudo random group of a given
size out the resulting sample and count data. For this, the sample function of R is used on all
possible groups.

runQualityAssurance

The  function  runQualityAssurance serves  possibilities  to  normalize  counts  for  quality
assurance purposes (see also chapter 4.3.3 for the conception).
The user could choose between the already introduced methods vst,  rlog,  log2 and raw
(which is the origin matrix). The choices could be made with a character vector which is
checked for correctness by the R function match.arg. As default, all methods are selected.
To retain the full  functionality of the foreign package functions that are in charge of the
normalization, the user could supply the argument addArguments. This parameter has to be
a  list  which  contains  the  method  identifier  as  name  together  with  an  alist object  that
includes the customizations. The  alist is similar to a list, but does not evaluate its content
([33] p. 268). 
The given  alist will  then be merged in  another  alist with  the default  parameters of  this
method (shown in figure 5.11, in line 3 to 9). The new list could now be used with the do.call
function of R, which calls the corresponding function (shown in line 11 to 12).
Finally a  QualityAssuranceResult object is created and inserted with the name of the used
method into a vector (shown in line 14 to 16).

Listing 5.6: The filtering of sample data in the function createAnalysisInfo.
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plotQualityAssurance

The  generated  vector  with  the  QualityAssuranceResult object  from  function
runQualityAssurance could  directly  be  used  with  the  function  plotQualityAssurance (the
concept was described in chapter 4.3.3).
By the implementation the following plots were included:

Table 12: Available plots of the function plotQualityAssurance.

Identifier Function
(Package)

Description

sd meanSdPlot 
(vsn)

Shows the standard deviation over rows (samples) versus the 
row means [54].

mds plotMDS 
(limma)

MDS is the abbreviation for multidimensional scaling plot. The 
scatter plot shows approximated log2 fold changes between 
samples through distances in two dimensions [47].

pca plotPCA 
(DESeq2)

Uses the rowVars function of the package genefilter to sort genes
descending to their highest variance between samples. A given 
number (default: up to 500) is then used for a principal 
component analysis accomplished through the stats function 
prcomp. The result is furthermore used to generate a scatter plot,
that indicates the correlations between sample groups.
The function is originally from the package DESeq2, but had 
been exported and modified for the usage with standard 

Listing 5.7: Usage of user given additional arguments for foreign functions in 
runQualityAssurance.
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matrices.

hmExpDesc pheatmap 
(pheatmap)

Uses rowMeans function and selects the top hundred genes in 
descending order for the input to pheatmap. Could be used to 
detect sample outliers, which might have a big negative 
influence through the high expression on the analysis results.

hmExpAsc pheatmap 
(pheatmap)

Similar to the description above, but here the genes will be 
sorted ascending order.

hmDist pheatmap 
(pheatmap)

Uses the dist function on the transposed count data (equal to 
over rows) and uses the result as input for the pheatmap function
and its clustering_distance_rows and clustering_distance_cols 
parameters. Could therefore also be used to detect groups and 
check the data quality.

It was also made possible for the user, to give additional arguments to several functions by
using the addArguments parameter. 

plotAnalysisInfo

The function plotAnalysisInfo should inform the user about the created analysis environment
and includes currently three possible plots:

Table 13: Available plots of the function plotAnalysisInfo.

Identifier Function
(Package)

Description

na plotNA Generates a bar plot with information about the amount of NA
values per column of the sample data (makes no sense if a 
filter has been used previously).

group plotBar2dFacet Shows the group counts by generating a fully customizable 
bar plot.

libsize plotLibSizeDist Generates a fully customizable bar plot, which shows the 
library sizes in millions. Could also be used to detect outliers.

Extra arguments for customizations could be supplied by the parameter addArguments.

plotBar2dFacet

The function offers an easy to use wrapper for the ggplot2 function ggplot to generate bar
plots. It includes the  facet_wrap function, which could be used to split the plots by given
groups.  An  input  given  by  the  user  has  to  be  the  parameter  data,  which  should  be  a
data.frame or a similar object and the parameter x, which should contain the name of the
categorical variable of interest.
At first instance, NA values would be transformed into the string “NA”, because otherwise
they would not be shown in the legend. Furthermore the object given by the variable data is
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coerced into a data.frame, for further usage.
Now a ggplot object could be generated by using the data variable and evaluating the given
x character vector in its context. Then the data for the bars is computed and added through
the usage of the geom_bar function.
The function plotBar2dFacet also allows many customizations, as for example three different
ways to color the bars. 
If the Boolean parameter  simpleColor has been set to TRUE by the user, ggplot's standard
colorization would be applied to the bars. If the ownColor attribute was given by the user,
the  scale_fill_manual option of ggplot2 is used with the supplied colors.  Additionally it  is
possible  to  use  the  diverging  color  palette  of  the  RColorBrewer  package,  by  using  the
scale_fill_brewer package. Of course the bars could be produced without colors too.
Further design choices could be made by using the theme parameter. The package ggplot2 is
offering 8 different  preconfigured themes that  are  able  to be attached by the function.
Themes could change the appearance of the data independent parts of the plot (see [55]).
Another feature was implemented, that rotates the labels of the x-axis at a certain length
and additionally wraps them into two sentences (by concatenation with “\n”), if they have a
length above 19. This should preserve the readability of the plot, even if uncommon long x
labels exist.
The generated plot could by exported by using an R graphic device (default is svg), or just
shown at the provided plot window.

plotBoxplot

This  function  could  be  used  similar  to  the  plotBar2dFacet function  for  manual  plot
generation. In this case a box plot could be generated out of a numeric value (y-axis) and a
categorical value (x-axis).
Like in  plotBar2dFacet, the ggplot package was used by the implementation. Through that
the taken steps were almost the same, with the difference that here  geom_boxplot was
used instead of the geom_bar function.

filterCountData

Like already mentioned in the concept chapter  4.3.2, it is recommended to filter the count
matrix before a DEA. This could be approached by using the function filterCountData. 
The function requires an AnalysisDataSet object or a numeric count matrix as input. Different
methods could, like in the other functions, be selected by a parameter, but currently only
the so called “cpm” method had been implemented.
For  the  calculation,  at  first  the  CPM's  are  computed  over  every  column  by  using  the
cpm.default method of the package edgeR. 
The  results  are  then  compared  against  the  given  parameter  limColumn by  the  logical
operator greater than.
Now the logical result is given to the  rowSums function, which finally is compared against
limColumn by using the logical operator greater equal (line 9 in the listing below). 
Finally the Boolean vector could be used to create a subset which contains the filtered genes
only (line 11).
 The similar method is also described in the edgeR manual (see [41], p. 11).
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runDifferentialExpressionAnalysis

The function  runDifferentialExpressionAnalysis takes control  over the whole DEA process.
Like described in chapter 4.3.4, the source code of this function would not be maintainable
without encapsulating the three packages first. This had been achieved through the creation
of  the  script  files  with  the  name  myEdgeR,  myDESeq2  and  myLimma.  The  consistent
structure of these wrapper script files is shown exemplary in myDESeq2 at the next section.
Like shown in figure  5, the DEA function could be exited in two different stages. The first
stage has been named priori, because on this point no hypothesis tests have been made yet.
The last stage on the other hand, has been named posteriori.
The DEA function expects an  AnalysisInfo object whose count  data is  already filtered by
using the function filterCountData. 
The attribute listAnalysisResult could be used to resume the function at the posteriori stage.
Therefore the necessary objects for each package would be extracted and all previous steps
skipped by using an if clause.
The parameter  isPrioriOnly  could be set to TRUE by the user and indicates that only  the
dispersions should be estimated. If it was set to FALSE (what is the default) and no or an
empty contrast list was supplied, the internal function “.createStandardContrastList” would
be called. 
This function creates a common contrast that compares the last column in the given model
matrix versus the first column. Thereby, it also considers if an intercept was given or not
(shown in line 2 in the figure below). In the former case the vector would have a leading
zero (line 14), in the latter one a leading minus one (line 7). The last digit would be in both
cases a one. All remaining digits would be set to zero trough the rep function of R.

Listing 5.8: Method cpm in the function filterCountData.
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Similar like in the runQualityAssurance function, the user could supply additional arguments
by using the addArguments parameter. But because of the high amount of possibilities, the
list  here is  more complex.  For  example  if  the user  wants  to change the method of  the
estimateDispersions function from DESeq2 to “parametric”, the given list has to be build in
the  following  way:  addArguments  =  list(“DESeq2”  =  alist(“estimateDispersions”  =
alist(“method” = “parametric”))). Nevertheless, this approach ensures that the parameters
reach the correct destination. 
For  every  package given  by  the  user  with  the  packages parameter  would  the  following
functions now be called with the do.call function and the standard parameter together with
the fitting additional parameters:

1. init<Package> (without addArguments)
2. estimateSizeFactors<Package>
3. estimateDispersions<Package> (shown in the figure below, at line 2 to 14)

The  several  results  of  the  estimate  dispersions  would  be  stored  now  in  a  list  at  the
prioriObjects slot of an  AnalysisResult object with the name of the corresponding package
(line 16 to 17).

Listing 5.9: Creation of the standard contrast list by the function “.createStandardContrastList”.
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If the prioriObjects of all given packages are stored and isPrioriOnly had been set to TRUE, a
list with the package names and the corresponding  AnalysisResult objects would now be
returned. 
If it otherwise had been set to FALSE, the following functions would be called:

1. fitModelTest<Package>
2. decideTests<Package>
3. normalizeResults<Package>

The  functions  decideTests and  normalizeResults need  a  contrast  as  argument  and  are
therefore called within a loop that iterates  over the supplied contrast list.  The returned
result objects are then saved in a separate list, by using the current position of the iteration
as index.
Finally,  if  the loop was exited,  both lists are assigned to the  AnalysisResult object of the
respective package. Additionally all AnalysisResults together with the package identifiers are
stored into a list, which is returned at the end of the function.

myDESeq2.R

Because it  would go beyond the constraints of  the thesis  to show the content of every
wrapper script file, the DESeq2 script was chosen to be explained exemplary for all three
files.
Following functions of the wrapper file myDESeq2 are used by the DEA function:

1. initDESeq2: This function could be used to generate all package dependent necessary

Listing 5.10: Attachment of user given arguments, function call and creation of an 
AnalysisResult object with prioriObjects.
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objects  for  the first  stage of  the DEA.  In  this  case  it  wraps the DESeq2 function
DESeqDataSetFromMatrix and uses instead an AnalysisInfo object as input.

2. estimateSizeFactorsDESeq2:  The  function  generates  the  second  possible  package
depending object in runDifferentialExpressionAnalysis. It should contain all necessary
normalization steps that have to be applied on the given count matrix. In this case
the estimateSizeFactors function of DESeq2 is used. The user could change the type
attribute of the function through the parameter method (line 2 and 7).

3. estimateDispersonsDESeq2:  How  already  mentioned  in  the  concept  chapter,  the
packages also need a wrapper for the calculation of the dispersion.  The outcome
could also give first important information about the data quality and could therefore
be used with the plotPrioriObjects function. The fitType of the estimateDispersion
function from DESeq2 was also unified and could be changed by using the parameter
method (line 2 and 7).

Listing 5.11: Instantiation of the DESeq2 object in the initDESeq2 wrapper function.

Listing 5.12: Attachment of the estimated size factors to the DESeq2 object in the 
estimateSizeFactorsDESeq2 wrapper function.
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4. fitModelTestDESeq2:  After  the  size  factors  and  the  dispersion  were  estimated
successfully,  the  statistical  model  could  be  applied.  Furthermore  the  coefficients
could be tested for significance. As already mentioned, DESeq2 offers two different
functions for the tests. The user could switch between the nbinomWaldTest and the
nbinomLRT function by using the parameter method (line 10 to 13 and 16 to 19). The
parameter  betaPrior was  set  to  FALSE  by  default,  because  the  function  is  not
supported in  case  of  user  supplied  model  matrices  (see  [38],  p.  39).  The further
parameter  minReplicatesForReplace,  indicates the minimum threshold of samples a
group must have, to enable outlier replacement (see [38], p. 36). This functionality is
under normal circumstances only available by using the DESeq main function, but it
was possible to adapt and reconstruct all necessary procedures.

Listing 5.13: Attachment of the dispersion estimations to the DESeq2 object in the 
estimateDispersionsDESeq2 wrapper function.
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5. decideTestsDESeq2: The last package depending calculations are made in the function
decideTestsDESeq2. In this case the results function of the package DESeq2 is called,
which returns the result for the given contrast optimized for the FDR threshold alpha
by using the correction given by the parameter method.

Listing 5.14: Fitting of the model and testing of the coefficients in the fitModelTestDESeq2 
wrapper function.
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6. normalizeResultsDESeq2:  Finally  the  result  object  has  to  be  normalized  and
transformed into a package independent  data.frame object. Furthermore the  alpha
parameter is used to create a subset which contains only genes with a probability
below  the  given  value  (line  10).  Now  the  genes  could  be  ordered  by  the  given
parameter resSortBy in the order which is given through resSortDesc (line 13 to 16).

Listing 5.15: Calculation and constellation of DEA results in the decideTestsDESeq2 wrapper 
function.

Listing 5.16: Normalize results and create ordered subset in the normalizeResultsDESeq2 
function.
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Besides  the  wrapper  functions  that  are  made  mainly  for  the  runDifferentialExpression
function, the script files contain also the necessary functions to plot parts of its results, the
priori  objects  and  posteriori  objects.  These  functions  are  called  by  the  functions
plotPrioriObjects and plotPosterioriObjects, but could also be called manually.

1. plotPrioriObjects:  This  function  could  generally  be  used  to  generate  a  dispersion
estimation plot (line 12 in the figure below). In this case the fitted mean-dispersion
correlation is shown together with the per-gene dispersion estimates ([39], p. 32).

2. plotPosterioriObjects: Handles analog to the plotPrioriFunction, but here the objects
which have been saved at the posteriori stage are used. Here the plotMA function of
DESeq2 is used to plot the log2 fold changes and their correlation to the mean of the
normalized counts ([39], p. 33).

Listing 5.17: Generate dispersion plot in plotPrioriDESeq2 function.

Listing 5.18: Generate log2 fold change plot in plotPosterioriDESeq2 function.



58

plotPrioriObjects

The function plotPrioriObjects could be used to plot the results from the priori stage of the
function runDifferentialExpressionAnalysis.
The function expects a list with package identifiers and their corresponding  AnalysisResult
objects as input. Furthermore the regular arguments of other functions with plot tasks could
be used.
The names in the list are checked for matches against the package names. If an entry has
been found, the respective plotPriori function is called and the plot generated.

plotPosterioriObjects

This  function  was  made  to  generate  plots  for  the  objects  that  are  generated  at  the
posteriori stage of the DEA function. The functional principle is similar to plotPrioriObjects,
with the difference that  every package has so many lists  as contrasts  were used at the
analysis. 
Through  that,  an  additionally  iteration  step  is  necessary,  which  calls  the  respective
posterioriPlot function. 

saveResults

It was also necessary to build a function that could store the result tables in the list of the
result  slot  of  each  AnalysisResult object.  This  was  done  by  the  implementation  of  the
function saveResults, which relies on the same procedures explained in plotPosterioriObjects.
The only difference is, that  saveResults has to work with package independent  data.frame
objects and could therefore use one single R function write.table for all packages.

joinResults

According to section 4.3.5, it was also necessary to implement a function that could join the
results. For that purpose the function joinResults was created.
The  function  expects  the  resulting  list  of  runDifferentialExpressionAnalysis as  input.
Additionally, the user could define how the tables should be joined through the joinMethod
argument. In the case of an outer join, all rows of every package will be exported. Missing
values will be filled with the given tableNA parameter. Otherwise, if an inner join was chosen,
only genes that were detected across all used packages would be exported. As default, both
methods will be used.
At the very beginning of  the function,  an  apply loop creates a list  by iterating over the
contrast count of the supplied result list (shown at line 3, in the listing below).
To  ensure  that  the  column  names  could  be  distinguished  between  the  packages,  the
package name is concatenated as prefix with a customizable separator (line 12 to 13).
The first table is exported to the variables innerJoinResult and outerJoinResult, by using the
iteration count as index (line 5 and 10).
Now another loop is necessary, that iterates over the used package count, but starting by
two (line 17).
The result  data.frame and name of the second package are now assigned to the variables
result and name. Also the prefix is added to the column names of the object result.
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The next step is to join the tables by using the methods selected by the user. This is made
with the R function merge (line 21 to 26). The merge function moves the row names into a
column, so the function has to reassign them, for the next iteration step (line 29 to 30).
After the inner loop over the packages has finished, the joined results of the first  given
contrast could be exported by the write.table function.
Finally the resulting  data.frame objects are stored in a list which is returned to the apply
loop, which could now proceed the iteration with the second contrast (line 34 to 36).
The result is a list of the form “list(“inner” = innerJoinResult, “outer” = outerJoinResult)”,
whereby unused methods will be NULL.
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plotComparison

The implementation of a Venn diagram is also necessary due the requirements (see section
2.1.3). 

Listing 5.19: Building a list which contains the joined results out of the AnalysisResult objects 
list in the joinResults function.



61

For  the  generation  of  visualizations  regarding  to  the  comparison  of  results  between
packages, the function  plotComparison was implemented. Currently this function can only
produce a Venn diagram, by using the venn.diagram function of the VennDiagram package. 
For each contrast, a list is created, which contains the row names of the result for every
used package together with the package name as identifier. This is approached by the usage
of the lapply function of R.
This  list  could  then be  used directly  with  the function  plotVennDiagram,  which  calls  the
venn.diagram function.

SerializeAnalysis

Because of the usage of well defined data structures, it is possible to serialize the outcome
of the functions. 
This  measurement could ensure that several  functions like  createAnalysisDataSet are  not
executed unnecessarily multiple times. Consequently it saves the time of the user and the
resources of the device it runs on. 
The function serializeAnalysis makes usage of the R function saveRDS, which saves the data
into a conform format, that could be read by readRDS used in unserializeAnalysis. 
The function allows additionally compression, which is set to gzip by default.

unserializeAnalysis

The function unserializeAnalysis is the counterpart to serializeAnalysis and works therefore in
the similar way. To read the R file, the function  readRDS is  used, which also detects the
compression format automatically.
Finally the function returns the reattached object.

Commando-line interfaces

As already mentioned, the initial  implementation will  contain a commando-line interface,
which could be used directly or for example controlled over a web-interface. The aim of the
implementation  was  at  first  to  satisfy  the  requirements  in  chapter  2.  So  not  every
functionality can be controlled over the interface yet.
Because of the high amount of options, the whole analysis was split into four different CLI's:

1. cli_createAnalyisDataSet.R:  Could  create  and  save  the  AnalysisDataSet object  and
creates optional a plot that shows the NA distribution over all columns.

2. cli_createAnalysisInfo.R:  Offers  the possibility  to create  and store the  AnalysisInfo
object  by  using  the  createAnalysisInfo function.  Further  the  count  data  could  be
filtered  by  filterCountData and  the  plotAnalysisInfo function  is  used  to  create  a
selection of plots.

3. cli_createPlot.R:  By  using  this  CLI,  the  user  has  access  to  the  functions  plotNA,
plotBar2dFacet and plotBoxplot.

4. cli_runDifferentialExpressionAnalysis.R  Finally  a  DEA  could  be  started  with  the
function  runDifferentialExpressionAnalysis.  Additionally  access  is  offered  to  the
functions:  runQualityAssurance,  plotQualityAssurance,  saveResults,  plotPrioriObjects,
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plotPosterioriObjects, joinResults, plotComparison and compareResultsToRef.

All CLI's are making use of the functions  serializeAnalysis and  unserializeAnalysis and have
consequently to be executed in the correct order. As helper for the generation of the help
text  and  the  assignment  of  the  arguments  and  options  the  function  make_option and
optparse of the package optparse have been used. The concept of the usage is oriented on
the optparse module of Python, which is similar to the newer argparse module [56].
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6 EVALUATION OF THE GENETIC DIFFERENTIAL EXPRESSION 
PIPELINE

This chapter describes the evaluation of the pipeline that has been developed in context of
this thesis. In this case the requirements in chapter 2 build the foundation for the evaluation.

The test case should be the detection of differential expressed genes between the tumor
tissue site distant metastasis and primary tumor. As data source should be used the SKCM
data set from TCGA (see chapter  3.3).  To hold up the overview in this experiment, both
groups should be restricted to twenty pseudo randomly selected samples.
All  commands  were  executed  in  Windows  7  by  using  the  standard  Command  Prompt
cmd.exe.

6.1 ASSEMBLERNASEQ2

This section describes the evaluation of the functional requirements defined in section 2.1.1
based on the defined use case at the beginning of this chapter.
Therefore the Python script  assembleRNAseq2 is used with the downloaded and extracted
mRNA data of the SKCM samples from the TCGA data portal [21].

Following command was thereby used for the script execution:

How shown  in  the  listing  6.1,  the  following  arguments  and  options  have  been  used  to
generate the target file.

Table 14: Description of the arguments used by the execution of assembleRNAseq2.py.

Position Value Description

1 “./” The first argument defines the source path. Here the
script was executed in the directory of the extracted

Listing 6.1: Execution of assembleRNAseq2.py.
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files.

2 “output/raw_counts.tsv” The second positional argument defines the 
destination and filename of the generated file. The 
directory has to be generated previously by the 
user. Here, the target file “raw_counts.tsv” has been
stored in a directory with the name “output”.

3 --source_file_col_key gene_id This optional argument has set “gene_id” as key 
column for the aggregation. Its content has been 
also exported together with the column 
“raw_count” (default parameter) to the target file. 

4 --verbose 3 Through this option, the verbosity of the script was 
set to level 3. Level 1 would print warnings only.

The extracted 473 files has now been aggregated by using a key column through the script.
The exported file has a size of 62.7 megabyte, contains 20532 rows (with header) and 474
columns  (with  row  names)  and  is  fitting  to  the  format  which  was  defined  in  the
requirements.
Consequently the three functional requirements A.F1, A.F2, A.F3 has been fulfilled.

As next step the non-functional requirements will be evaluated (section 2.2). 
Here, NF1 is given. A commando-line interface is not the user-friendliest approach, but it
fulfills  its  purpose.  Additionally  a  help has been implemented,  that could guide the user
through the usage.
The functional requirement NF4 is fulfilled already through the implementation of the CLI.
Of course other interfaces could be also implemented.
The further requirements NF2 and NF3 are fulfilled, because of the usage of Python. This
encapsulates the script completely from the main application and makes it independent.

6.2 ASSEMBLECLINICAL

Analog to  assembleRNAseq2,  in this  section  assembleClinical will  be evaluated against the
functional requirements defined in section 2.1.2.
Here  the  Python  script  is  used  with  the  downloaded  and  extracted  clinical  data
corresponding to the mRNA data used in the last section [21].

Following command has been used with the CLI:
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The following arguments have been used in listing 6.1:

Table 15: Description of the arguments used by the execution of assembleClinical.py.

Position Value Description

1-5 “*.txt” The first five arguments select the source files that 
should be used for the aggregation.

6 “output/clinical_data.tsv” Like in assembleRNAseq2, the last positional 
argument defines the destination and filename of 
the generated file. The directory has to be generated
previously by the user. Here, the target file 
“clinical_data.tsv” has been stored in a directory 
with the name “output”.

7 --foreign_key 
bcr_patient_barcode

Through this optional argument, the key column for
the aggregation has been set to 
“bcr_patient_barcode”. 

8 --column_prefix “” “flwup_” This arguments allows to set a prefix for every file 

Listing 6.2: Execution of assembleClinical.py.
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“rad_” “ctrl_” “smpl_” given in the first positional argument.

9 --verbose 3 Through this option, the verbosity of the script was 
set to level 3. Level 1 would print warnings only.
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Here the resulting file was aggregated out of 5 different files by using a key column and has
finally a size of 980 kilobyte, contains 471 rows (with header) and 187 columns. Its content is
also fitting to the format which was defined in the requirements.
Consequently the three functional requirements B.F1, B.F2, B.F3 has been fulfilled.

The evaluation of the non-functional requirements (section 2.2)  which have be described in
section 6.1 could be also applied on the tool assembleClinial. 
Therefore the implementation fulfills again all given requirements.

6.3 GENETICANALYSISPIPELINE

This  section  describes  the  evaluation  of  the  GeneticAnalysisPipeline  against  the  given
requirements in section  2.1.3. The two files whose creation has been described in the last
sections has been used here as input.
Execution of the first CLI script:
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Listing 6.3: Execution of cli_createAnalysisDataSet.
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The warnings in line 26 to 28 shown in listing 6.3 were caused of the existence of multiple
samples per patient. Furthermore how shown in 29 to 32, TCGA has used ambiguous counts
for the genes. 
The execution of the first script already realizes the requirements C.F1 and C.F2. The detailed
execution of the other three CLI scripts will not be further illustrated. They could all be used
similar to the cli_createAnalysisDataSet script shown in listing  6.3 and serve every option
that is needed to fulfill the functional requirements at minimum.

The figure 7 shows the distribution of the groups which are stored in the AnalysisInfo object.
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The following PCA plot shows the result of the function runQualityAssurance. In an optimal
case the two dots of the several groups would have a short distance to group members and
a long distance to other groups. Therefore the count data in the test case seems not to be
optimal.

Figure 7: Bar plot generated by the function plotAnalysisInfo with 
customized theme and color.
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In figure 9 a heat map indicates several groups by clustering. Here the log2 transformed data
was used.

Figure 8: The PCA plot of the rlog method generated by the function 
plotQualityAssurance.
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Finally the Venn diagram is shown. In the case used for evaluation, the package edgeR has
detected 71 differentially expressed genes, DESeq2 81 and limma 0. The relatively low result
could be caused through the low sample count and also bad sample quality.

Figure 9: A heat map "hmDist" is showing the results of the log2 transformation.
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All other plots could also be produced, but will not be shown here for the sake of brevity.
Additionally the files have been created properly and so all functional requirements has been
fulfilled. 
The non-functional requirements NF1 and partly NF2 has been fulfilled through the CLI. The
usage  of  a  package  structure,  the  high  abstraction  of  the  pipeline  and  the  strong
modularization  of  the  several  used  statistical  packages  finally  satisfying  the  remaining
requirements.

Figure 10: Venn diagram shows the intersections of the several 
determined differentially expressed genes between the used 
packages.
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7 CONCLUSION

The tools assembleRNAseq2, assembleClinical and the GeneticAnalysisPipeline package whose
have  been  implemented  in  the  context  of  this  thesis  could  help  scientists  to  detect
differential  expressed genes between samples.  Many additional  features allowing a high
customization of every analysis and their exports. Through the uniformed parameters across
the packages, no additionally manual should be necessary. Furthermore the several stages
of an analysis could be saved and resumed. Through the integrated CLI, no programming
skills are necessary for the usage. Finally, the developed tools could save a lot of time.

The high modularization and abstraction are fitting very well to the principal concept of a
pipeline.  The  strict  separation  of  the  data  preparation  step  from  the  main  application
through the  usage  of  Python  enables  a  fast  implementation  of  other  data  sources  (for
example a data base). Also the CLI interface could be exchanged quickly.
The  same  could  be  said  about  the  main  application,  written  in  R.  The  packages  are
encapsulated and could be exchanged and extended without costing too much time. 

In the future, another interface could be implemented to the pipeline. This could be for
example a REST (abbr. for representational state transfer) interface, which is often used for
web services [57].
Also possible is the extension of the GeneticAnalysisPipeline package. For example could the
information from the principal component analysis be used to detect correlations between
columns of the sample data automatically. This feature detection could also help the user by
setting up the hypothesis.
Another great feature would be the possibility to make a look up to a gene ontology by
using the labels of the differential expressed genes (see also [42], p 48). Through this more
information could be retrieved.
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AnalysisDataSet-class AnalysisDataSet class and constructors

Description

AnalysisDataSet is a subclass of RangedSummarizedExperiment, and storing all relevant input
data for the Genetic Analysis pipeline. Additionally, this class checks for properly input and make
it possible to easily access count matrix and sample data through correspondingly countData and
sampleData. AnalysisDataSet checks also if order of input is correct and the matrix has non
negative integer values.
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Usage

AnalysisDataSet(object, ...)

AnalysisDataSetFromMatrix(countData, sampleData, ...)

countData(object, ...)

countData(object, ...) <- value

sampleData(object, ...)

sampleData(object, ...) <- value

## S4 method for signature 'SummarizedExperiment0'
AnalysisDataSet(object, ...)

## S4 method for signature 'SummarizedExperiment'
AnalysisDataSet(object, ...)

## S4 method for signature 'RangedSummarizedExperiment'
AnalysisDataSet(object, ...)

## S4 method for signature 'missing'
AnalysisDataSet(object, ...)

## S4 method for signature 'AnalysisDataSet'
sampleData(object)

## S4 replacement method for signature 'AnalysisDataSet,data.frame'
sampleData(object) <- value

## S4 replacement method for signature 'AnalysisDataSet,DataFrame'
sampleData(object) <- value

## S4 method for signature 'AnalysisDataSet'
countData(object)

## S4 replacement method for signature 'AnalysisDataSet,matrix'
countData(object) <- value

## S4 method for signature 'matrix,missing'
AnalysisDataSetFromMatrix(countData, sampleData, ...)

## S4 method for signature 'matrix,data.frame'
AnalysisDataSetFromMatrix(countData, sampleData,
...)

## S4 method for signature 'matrix,DataFrame'
AnalysisDataSetFromMatrix(countData, sampleData,
...)

## S4 method for signature 'matrix,ANY'
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AnalysisDataSetFromMatrix(countData, sampleData, ...)

Examples

countData = matrix(1:100, ncol = 4, dimnames = list(1:25, 1:4))
sampleData = data.frame(sample = c("A", "B", "C", "D"))
sds = AnalysisDataSetFromMatrix(countData, sampleData)

AnalysisInfo-class AnalysisInfo class and constructors

Description

AnalysisInfo acts as container for analysis informations for the Genetic Analysis pipeline. It
includes metadata like name, time, formula and a corresponding AnalysisDataSet with attached
countData and sampleData. Additionally, this class checks for plausible input and make changes
if necessary (see warnings).

Usage

AnalysisInfo(time, name, formula, model, group, contrast, envir, ...)

envir(object, ...)

envir(object, ...) <- value

time(x, ...)

time(object, ...) <- value

name(object)

name(object, ...) <- value

formula(x, ...)

formula(object, ...) <- value

model(object)

model(object, ...) <- value

group(object)

contrast(object)

contrast(object, ...) <- value

## S4 method for signature
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## 'character,character,formula,matrix,missing,list,AnalysisDataSet'
AnalysisInfo(time,
name, formula, model, group, contrast, envir, ...)

## S4 method for signature
## 'character,missing,formula,matrix,missing,list,AnalysisDataSet'
AnalysisInfo(time,
name, formula, model, group, contrast, envir, ...)

## S4 method for signature
## 'character,character,formula,missing,missing,missing,AnalysisDataSet'
AnalysisInfo(time,
name, formula, model, group, contrast, envir, ...)

## S4 method for signature
## 'missing,character,formula,matrix,missing,list,AnalysisDataSet'
AnalysisInfo(time,
name, formula, model, group, contrast, envir, ...)

## S4 method for signature
## 'character,missing,formula,missing,missing,missing,AnalysisDataSet'
AnalysisInfo(time,
name, formula, model, group, contrast, envir, ...)

## S4 method for signature
## 'missing,character,formula,missing,missing,missing,AnalysisDataSet'
AnalysisInfo(time,
name, formula, model, group, contrast, envir, ...)

## S4 method for signature
## 'missing,missing,formula,matrix,missing,list,AnalysisDataSet'
AnalysisInfo(time,
name, formula, model, group, contrast, envir, ...)

## S4 method for signature
## 'missing,missing,formula,missing,missing,missing,AnalysisDataSet'
AnalysisInfo(time,
name, formula, model, group, contrast, envir, ...)

## S4 method for signature 'AnalysisInfo'
envir(object)

## S4 replacement method for signature 'AnalysisInfo,AnalysisDataSet'
envir(object) <- value
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## S4 method for signature 'AnalysisInfo'
formula(x)

## S4 replacement method for signature 'AnalysisInfo,formula'
formula(object) <- value

## S4 method for signature 'AnalysisInfo'
model(object)

## S4 replacement method for signature 'AnalysisInfo,formula'
model(object) <- value

## S4 method for signature 'AnalysisInfo'
group(object)

## S4 method for signature 'AnalysisInfo'
contrast(object)

## S4 replacement method for signature 'AnalysisInfo,list'
contrast(object) <- value

## S4 method for signature 'AnalysisInfo'
time(x)

## S4 replacement method for signature 'AnalysisInfo,character'
time(object) <- value

## S4 method for signature 'AnalysisInfo'
name(object)

## S4 replacement method for signature 'AnalysisInfo,character'
name(object) <- value

## S4 method for signature 'AnalysisInfo'
show(object)

Slots

time Character vector with creation time stamp.

name Character vector including the name of analysis.

formula Formula of interest.

model Optional model matrix, corresponding to given formula.

group A factor which should be built out of the concatenated values from the columns of interest.

contrast A list of contrast vectors.

envir A link{AnalysisDataSet} object, with sample and count data which is needed in experi-
mental context.

See Also

AnalysisDataSet AnalysisDataSetFromMatrix
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Examples

countData = matrix(1:100, ncol = 4, dimnames = list(1:25, 1:4))
sampleData = data.frame(sample = c("A", "B", "C", "B"))
analysisDataSet = AnalysisDataSetFromMatrix(countData, sampleData)
analysisInfo = AnalysisInfo(time = date(),
name = "example",
formula = ~ sample,
envir = analysisDataSet,
)

AnalysisResult-class AnalysisResult class and constructors

Description

AnalysisResult acts as container for analysis result data for the differential expression pipeline.
It includes meta data like name for package name, objects, which is preserved for the package
depending provisional results (e.g. dispersion estimations) together with the result. Additionally,
this class checks for plausible input and make changes if necessary (see warnings).

Usage

AnalysisResult(name, prioriObjects, posterioriObjects, result, ...)

result(object)

result(object, ...) <- value

prioriObjects(object)

prioriObjects(object, ...) <- value

posterioriObjects(object)

posterioriObjects(object, ...) <- value

## S4 method for signature 'character,list,list,list'
AnalysisResult(name, prioriObjects,
posterioriObjects, result, ...)

## S4 method for signature 'character,list,list,missing'
AnalysisResult(name, prioriObjects,
posterioriObjects, result, ...)

## S4 method for signature 'character,list,missing,missing'
AnalysisResult(name, prioriObjects,
posterioriObjects, result, ...)

## S4 method for signature 'character,missing,missing,missing'
AnalysisResult(name,
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prioriObjects, posterioriObjects, result, ...)

## S4 method for signature 'AnalysisResult'
name(object)

## S4 replacement method for signature 'AnalysisResult,character'
name(object) <- value

## S4 method for signature 'AnalysisResult'
result(object)

## S4 replacement method for signature 'AnalysisResult,list'
result(object) <- value

## S4 method for signature 'AnalysisResult'
prioriObjects(object)

## S4 replacement method for signature 'AnalysisResult,list'
prioriObjects(object) <- value

## S4 method for signature 'AnalysisResult'
posterioriObjects(object)

## S4 replacement method for signature 'AnalysisResult,list'
posterioriObjects(object) <- value

## S4 method for signature 'AnalysisResult'
show(object)

Slots

name Character vector including the name of the used package.

prioriObjects List of needed package depending objects which are needed in further context.

posterioriObjects List which includes lists of objects (per contrast) that could be used in further
context.

result A data.frame object including normalized result informations.

See Also

AnalysisDataSet AnalysisDataSetFromMatrix

Examples

countData = matrix(1:100, ncol = 4, dimnames = list(1:25, 1:4))
sampleData = data.frame(sample = c("A", "B", "C", "B"))
sds = AnalysisDataSetFromMatrix(countData, sampleData)
sdsInfo = AnalysisInfo(time = date(),
name = "example",
formula = ~ sample,
envir = sds,
)
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compareResultsToRef Compare result tables against references.

Description

Compare result tables from AnalysisResult object with a reference or multiple references.

Usage

compareResultsToRef(listAnalysisResult, lReferenceTables, refIDcolumn = 1,
export = TRUE, separator = "\t", pathTables = paste0(".",
.Platform$file.sep), file_extension = ".tsv", verbose = 2, ...)

Arguments

listAnalysisResult

A vector or list with AnalysisResult objects and attached result.
lReferenceTables

A list with attached reference data.frame objects. Example: list("maurerer" =
data.frame()).

refIDcolumn Integer with column number to ID’s in reference table.

export Boolean if table should be written to hard drive.

separator Delimiter for columns used in resulting file.

pathTables Path to directory, which should be used for export.

file_extension File extension (should fit to separator).

verbose Integer value describing the verbose level (silent = 0, warnings = 1, ...)

See Also

runDifferentialExpressionAnalysis, AnalysisResult

createAnalysisDataSet Create easily an AnalysisDataSet object

Description

First state of the GeneticAnalysisPipeline package.The function checks if supported files are
appropriate for the further analysis and returns a AnalysisDataSet.
Additionally it is possible to normalize the sample data file. Through this automatically NA words
and data types will be detected (see detectDatatype for more information).

Usage

createAnalysisDataSet(fileCountData, fileSampleData, sepCountData = "\t",
sepSampleData = "\t", keyColSampleData = 1, detectDataType = TRUE,
countDataHasRownames = TRUE, verbose = 2, ...)
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Arguments

fileCountData Path to file which is including the count data.

fileSampleData Filepath leading to sample data.

sepCountData Column separator used in count file.

sepSampleData Delimiter for columns used in sample file.
keyColSampleData

String or integer with name or number from the key column of the supplied
sample file.

detectDataType Makes use of the function detectDatatype.
countDataHasRownames

True, if labels are supplied at the first column of the count table. Otherwise rows
will be numbered automatically.

verbose Integer value describing the verbose level (silent = 0, warnings = 1, ...)

Value

A AnalysisDataSet.

See Also

fread which enables faster read and will be used for the count file, if the package is installed.
detectDatatype to adjust automatic normalization with further optional arguments.

Examples

## Not run:
# Create exemplary sample data
sampleData = c(77, 1, 2, 3, "NOT AVAILABLE", 4, "NOT AVAILABLE", 9)
sampleData = data.frame(sampleData)
sampleCount = nrow(sampleData)
# Create count data
countData = matrix(data = rep(c(100:0), times = sampleCount), ncol = sampleCount)
colnames(countData) = 1:sampleCount

# Write temporary count file
tfCount = tempfile()
write.table(countData,
file = tfCount,
sep = "\t",
row.names = TRUE,
col.names = NA,
quote = FALSE)
# Write temporary sample file
tfSample = tempfile()
write.table(sampleData,
file = tfSample,
sep = "\t",
row.names = TRUE,
col.names = NA,
quote = FALSE)

# Create AnalysisDataSet which could be used in analysis pipeline
analysisDataSet = createAnalysisDataSet(fileCountData = tfCount,
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fileSampleData = tfSample,
verbose = 2)

## End(Not run)

createAnalysisInfo Second state in GeneticAnalysisPipeline pipeline.

Description

The outcome from initalizeDataSet needs to be more specified for a common expression anal-
ysis. Relevant columns will be filtered automatically with usage of a given formula. In the case of
a blind analysis (formula = ~ 1), target columns should be specified by selection argument. It is
also possible to filter rows by using R’s binary operators (see Comparison.

Usage

createAnalysisInfo(analysisDataSet, time, name, formula, contrast, selection,
condition, referenceValue, rndGroupSize, verbose = 2, ...)

Arguments

analysisDataSet

A AnalysisDataSet object.

time Timestamp from analysis.

name Name from analysis.

formula Formula for analysis.

contrast Numeric vector, describing the factor for each coefficient (equal to the columns
in the used model.matrix).

selection Optional column selection (e.g.: for ~ 1 usage).

condition Optional condition to select relevant rows only. countData will be automati-
cally fitted to sampleData.

referenceValue The last specified formula parameter should be the one of interest. Because
the standard reference Factor’s is internally chosen alphabetically, a reference
should be given (equal to control group) to this parameter.

rndGroupSize A integer used to select a pseudo random number of every result constellation.

verbose Integer value describing the verbose level (silent = 0, warnings = 1, ...)

Value

AnalysisInfo object.

See Also

AnalysisDataSet, AnalysisInfo.
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Examples

# Create exemplary sample data
color = c("blue", "brown", "blue", "green")
gender = c("female", "male", "male", "female")
sampleData = data.frame(gender, color, row.names = letters[1:4])
# Create count data
countData = matrix(as.integer(c(1,2,3,4)), ncol = 4,
dimnames = list(1, letters[1:4]))
# Setup analysis
formula = ~ 1 + gender
name = "test"
time = date()
# Create AnalysisDataSet
analysisDataSet = AnalysisDataSetFromMatrix(countData = countData,
sampleData = sampleData)

# Create AnalysisInfo
analysisInfo = createAnalysisInfo(analysisDataSet = analysisDataSet,
time = time,
name = name,
formula = formula)

# Create AnalysisInfo, filter by gender
analysisInfo = createAnalysisInfo(analysisDataSet = analysisDataSet,
time = time,
name = name,
formula = formula,
condition = "gender == \"female\"",
verbose = 3)

decideTestsDESeq2 Fifth state of DESeq2 package differential expression analysis.

Description

This function is used as wrapper for the fifth possible step of all used differential expression anal-
ysis packages used in GeneticAnalysisPipeline. In this functions, results will be evaluated and
extracted.

Usage

decideTestsDESeq2(dseqDataSet, contrast, method = "BH", alpha = 0.05,
verbose = 1, ...)

Arguments

dseqDataSet Object from DESeqDataSet class.

contrast Matrix or numeric vector, indicating the coefficients that will be tested to be
equal to zero.
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method Adjust methods:
BH: Used in DESeq2 and edgeR standardly, also left as standard here.
BY: Benjamini-Yekutieli (2001).
holm: a less conservative correction by Holm (1988).
none: pass through.

alpha Significance cut-off value (default: 0.05)

verbose Integer value describing the verbose level (silent = 0, warnings = 1, ...)

Details

DESeq2 function to classify the results. Different schemes allows multiple testing across contrasts
or over genes.

Value

DESeqResults object with attached result.

See Also

DESeq2: results
edgeR: decideTestsDGE
limma: decideTests
For more adjust methods: p.adjust

Examples

# Create count data using DESeq2
dds = DESeq2::makeExampleDESeqDataSet()
countData = SummarizedExperiment::assay(dds)
sampleData = SummarizedExperiment::colData(dds)
# Create AnalysisDataSet
analysisDataSet = AnalysisDataSetFromMatrix(countData = countData,
sampleData = sampleData)
# Create AnalysisInfo
analysisInfo = AnalysisInfo(time = date(),
name = "test",
formula = ~ 1,
envir = analysisDataSet)
dseq = initDESeq2(analysisInfo)
dseq = estimateSizeFactorsDESeq2(dseq)
dseq = estimateDispersionsDESeq2(dseq)
dseq = fitModelTestDESeq2(dseq)
dseq = decideTestsDESeq2(dseq)

decideTestsEdgeR Fifth state of edgeR package differential expression analysis.
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Description

This function is used as wrapper for the fifth possible step of all used differential expression anal-
ysis packages used in GeneticAnalysisPipeline. In this functions, results will be evaluated and
extracted.

Usage

decideTestsEdgeR(edgeRdataSet, contrast, method = "BH", alpha = 0.05,
verbose = 1, ...)

Arguments

edgeRdataSet Object from DGELRT or DGEExact class.

contrast Numeric vector, indicating the coefficients that will be tested to be equal to zero.

method Adjust methods:
BH: Used in DESeq2 and edgeR standardly, also left as standard here.
BY: Benjamini-Yekutieli (2001).
holm: a less conservative correction by Holm (1988).
none: pass through.

alpha Significance cut-off value (default: 0.05)

verbose Integer value describing the verbose level (silent = 0, warnings = 1, ...)

Details

edgeR function to classify the results. Different schemes allows multiple testing across contrasts or
over genes. Adapted from decideTests.

Value

TestResults object with attached result.

See Also

DESeq2: results
edgeR: decideTestsDGE
limma: decideTests
For more adjust methods: p.adjust

Examples

requireNamespace("edgeR")
countData = matrix(rnbinom(1e04, mu=5, size=2), ncol=4)
# Ensure that we have an integer matrix
storage.mode(countData) = "integer"
sampleData = data.frame(group = factor(rep(LETTERS[1:2], each = 2)))
# Create AnalysisDataSet
analysisDataSet = AnalysisDataSetFromMatrix(countData = countData,
sampleData = sampleData)
# Create AnalysisInfo
analysisInfo = AnalysisInfo(time = date(),
name = "test",
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formula = ~ group,
envir = analysisDataSet)
dgelist = initEdgeR(analysisInfo)
dgelist = estimateSizeFactorsEdgeR(dgelist)
dgelist = estimateDispersionsEdgeR(dgelist)
dgelist = fitModelTestEdgeR(dgelist)

decideTestsLimma Fifth state of limma package differential expression analysis.

Description

This function is used as wrapper for the fifth possible step of all used differential expression anal-
ysis packages used in GeneticAnalysisPipeline. In this functions, results will be evaluated and
extracted.

Usage

decideTestsLimma(limmaDataSet, contrast, method = "BH", alpha = 0.05,
verbose = 1, ...)

Arguments

limmaDataSet mArrayLM object from DGELRT or DGEExact class.

contrast Numeric vector, indicating the coefficients that will be tested to be equal to zero.

method Adjust methods:
BH: Used in DESeq2 and edgeR standardly, also left as standard here.
BY: Benjamini-Yekutieli (2001).
holm: a less conservative correction by Holm (1988).
none: pass through.

alpha Significance cut-off value (default: 0.05)

verbose Integer value describing the verbose level (silent = 0, warnings = 1, ...)

Details

limma function to classify the results. Different schemes allows multiple testing across contrasts or
over genes. Similar to decideTestsDGE.

Value

TestResults object with attached result.

See Also

limma: decideTests
DESeq2: results
edgeR: decideTestsDGE
For more adjust methods: p.adjust
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Examples

requireNamespace("limma")
requireNamespace("edgeR")
countData = matrix(rnbinom(1e04, mu=5, size=2), ncol=4)
# Ensure that we have an integer matrix
storage.mode(countData) = "integer"
sampleData = data.frame(group = factor(rep(LETTERS[1:2], each = 2)))
# Create AnalysisDataSet
analysisDataSet = AnalysisDataSetFromMatrix(countData = countData,
sampleData = sampleData)
# Create AnalysisInfo
analysisInfo = AnalysisInfo(time = date(),
name = "test",
formula = ~ group,
envir = analysisDataSet)
dgelist = initLimma(analysisInfo)
dgelist = estimateSizeFactorsLimma(dgelist)
dgelist = estimateDispersionsLimma(dgelist)
mArrayLM = fitModelTestLimma(dgelist)
mArrayLM = decideTestsLimma(mArrayLM)

detectDatatype detectDatatype is a helper function for the
GeneticAnalysisPipeline pipeline

Description

This function helps read.table to:

• detect missing values and replacing them with the NA constant from the R language.

• change integers to numerics (standardly).

• change factors to numerics, assuming a column with numerics.

• change factors to dates, assuming a column with dates.

Usage

detectDatatype(file, sep = "\t", header = TRUE, dec = ".", quote = "",
nrows = -1L, naStrings, dateFormat = "%Y-%m-%d",
shrinkFactors = TRUE, ubound = 0.8, lbound = 0.15, naTolerance = 0.8,
skipFirstColumn = FALSE, verbose = 1, ...)

Arguments

file The path or name of the file to read from.

sep Field separator used in file.

header Logical value indicating if the file contains column labels.

dec Decimal point character of file.

quote Quoting character. Set "" to disable.

nrows Count of rows that should be read for interpretation.
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naStrings Vector with possible NA candidates.
dateFormat String including a constellations of %d, %m, %y and %Y are supported.
shrinkFactors Boolean value indicating if values of factors should be reduced using naStrings.
ubound Percentage (decimal), of occurrences a class must have, so that no further esti-

mations (lbound) are needed for conversion.
lbound Absolute minimum amount of occurrences, that a class must have to make the

deeper check on unique NA values naTolerance.
naTolerance Percentage of uniqueness the estimated NA values must have serving the lbound.
skipFirstColumn

Logical value indicates if the first column should be passed through only (e.g.
because of row names). This column will be coerced to class character.

Value

A list with the attributes colClasses and na.strings.

Info

useDataTablePkg !CurrentlyDeactivated! Boolean value. TRUE enables fread from data.table
package instead of using read.table.

See Also

This is a helper function for read.table or otherwise if enabled and installed fread.

Examples

## Not run:
sample = c(77, 1, 2, 3, "NOT AVAILABLE", 4, "NOT AVAILABLE", 9)
sampleData = data.frame(someNumerics = sample)
tf = tempfile()
write.table(sampleData, tf, sep = "\t", row.names = FALSE, col.names = TRUE,
quote = FALSE)
readData = read.table(tf, sep = "\t", header = TRUE)
# Output: "factor"
is(readData[, 1], "factor")
sampleDataNumeric = detectDatatype(file = tf, verbose = 0)
# Output: "numeric"
is(sampleDataNumeric[, 1], "numeric")
## End(Not run)

estimateDispersionsDESeq2

Third state of DESeq2 package differential expression analysis.

Description

This function is used as wrapper for the third possible step of all used differential expression anal-
ysis packages used in GeneticAnalysisPipeline. Using the estimated size factors out of the
second calculation step, it is possible to make dispersion estimations between samples of the same
group, using the supplied formula. The outcome should be a fitted model.
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Usage

estimateDispersionsDESeq2(dseqDataSet, method = c("parametric", "local",
"mean"), verbose = 1, ...)

Arguments

dseqDataSet Object from DESeqDataSet class.

method Method for estimating dispersion trend:
parametric: Fit a dispersion-mean relation.
local: Log dispersion against log mean, weighted by normalized mean count.
mean: Uses mean of gene wise dispersion estimates.

verbose Integer value describing the verbose level (silent = 0, warnings = 1, ...)

Details

DESeq2 function makes standardly usage of the Cox-Reid method, to estimate dispersion for Nega-
tive Binomial distributed data (like edgeR).

Value

DESeqDataSet object.

See Also

DESeq2: estimateDispersions
edgeR: estimateDisp
limma: voom

Examples

# Create count data using DESeq2
dds = DESeq2::makeExampleDESeqDataSet()
countData = SummarizedExperiment::assay(dds)
sampleData = SummarizedExperiment::colData(dds)
# Create AnalysisDataSet
analysisDataSet = AnalysisDataSetFromMatrix(countData = countData,
sampleData = sampleData)
# Create AnalysisInfo
analysisInfo = AnalysisInfo(time = date(),
name = "test",
formula = ~ 1,
envir = analysisDataSet)
dseq = initDESeq2(analysisInfo)
dseq = estimateSizeFactorsDESeq2(dseq)
dseq = estimateDispersionsDESeq2(dseq)
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estimateDispersionsEdgeR

Third state of edgeR package differential expression analysis.

Description

This function is used as wrapper for the third possible step of all used differential expression anal-
ysis packages used in GeneticAnalysisPipeline. Using the estimated size factors out of the
second calculation step, it is possible to make dispersion estimations between samples of the same
group, using the supplied formula. The outcome should be a fitted model.

Usage

estimateDispersionsEdgeR(edgeRdataSet, method = c("locfit", "movingave",
"loess", "none"), robust = TRUE, isClassicEdgeR = FALSE, verbose = 1,
...)

Arguments

edgeRdataSet Object from DGEList class.

method Method for estimating dispersion trend:
locfit, movingave, loess and none

robust Boolean value. TRUE robustifies prior.df against outliers.

isClassicEdgeR Boolean value that could switch edgeR’s classic mode on and off. Classic mode
works with one factorial experiments only!

verbose Integer value describing the verbose level (silent = 0, warnings = 1, ...)

Details

edgeR function makes standardly usage of the Cox-Reid method, to estimate dispersion for Negative
Binomial distributed data (like DESeq2).

Value

DGEList object.

See Also

edgeR: estimateDisp
Classic mode: estimateCommonDisp
"GLM" mode: estimateGLMCommonDisp
limma: voom
DESeq2: estimateDispersions
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Examples

requireNamespace("edgeR")
countData = matrix(rnbinom(1e04, mu=5, size=2), ncol=4)
# Ensure that we have an integer matrix
storage.mode(countData) = "integer"
sampleData = data.frame(group = factor(rep(LETTERS[1:2], each = 2)))
# Create AnalysisDataSet
analysisDataSet = AnalysisDataSetFromMatrix(countData = countData,
sampleData = sampleData)
# Create AnalysisInfo
analysisInfo = AnalysisInfo(time = date(),
name = "test",
formula = ~ 1,
envir = analysisDataSet)
dgelist = initEdgeR(analysisInfo)
dgelist = estimateSizeFactorsEdgeR(dgelist)
dgelist = estimateDispersionsEdgeR(dgelist)

estimateDispersionsLimma

Third state of edgeR package differential expression analysis.

Description

This function is used as wrapper for the third possible step of all used differential expression anal-
ysis packages used in GeneticAnalysisPipeline. Using the estimated size factors out of the
second calculation step, it is possible to make dispersion estimations between samples of the same
group, using the supplied formula. The outcome should be a fitted model.

Usage

estimateDispersionsLimma(limmaDataSet, method = c("none", "quantile"),
verbose = 1, ...)

Arguments

limmaDataSet Object from DGEList class.

method Normalization method for logCPM’s:
none: Standard, because normally no further normalization is needed.
quantile: In case of very noisy data "quantile" is proposed.

verbose Integer value describing the verbose level (silent = 0, warnings = 1, ...)

Details

limma’s voom function transforms count data to log2 counts per million, estimates the mean-
variance relationships and finally uses the results to calculate the weights. Opposite to edgeR and
DESeq2, now linear statistical models could be used. See also normalizeBetweenArrays for infor-
mations about the methods.
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Value

EList object. Caution: Old data will be loss!

See Also

limma: voom
edgeR: estimateDisp
DESeq2: estimateDispersions

Examples

requireNamespace("limma")
requireNamespace("edgeR")
countData = matrix(rnbinom(1e04, mu=5, size=2), ncol=4)
# Ensure that we have an integer matrix
storage.mode(countData) = "integer"
sampleData = data.frame(group = factor(rep(LETTERS[1:2], each = 2)))
# Create AnalysisDataSet
analysisDataSet = AnalysisDataSetFromMatrix(countData = countData,
sampleData = sampleData)
# Create AnalysisInfo
analysisInfo = AnalysisInfo(time = date(),
name = "test",
formula = ~ 1,
envir = analysisDataSet)
dgelist = initLimma(analysisInfo)
dgelist = estimateSizeFactorsLimma(dgelist)
dgelist = estimateDispersionsLimma(dgelist)

estimateSizeFactorsDESeq2

Second state of DESeq2 package differential expression analysis.

Description

This function is used as wrapper for the second possible step of all used differential expression
analysis packages used in GeneticAnalysisPipeline. It estimates size factors (aka normalization
factors) which could fit the count values properly for the several analysis method. Target is to get
robust values with focus to dispersion and variance.

Usage

estimateSizeFactorsDESeq2(dseqDataSet, method = c("ratio", "iterate"),
verbose = 1, ...)

Arguments

dseqDataSet Object from DESeqDataSet class.
method ratio: Uses standard median ratio.

iterate: Likelihood optimization, using a ~ 1 model.
verbose Integer value describing the verbose level (silent = 0, warnings = 1, ...)
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Details

DESeq2 standardly estimates size factors using the "median ratio method". It generates an artificial
pseudo sample out of the geometric mean for each gene over all samples. Factors are calculated
median ratios from a sample against the pseudo sample.
For more information see estimateSizeFactors and for even more details estimateSizeFactorsForMatrix.

Value

DESeqDataSet object.

See Also

DESeq2: estimateSizeFactors
edgeR, limma: calcNormFactors

Examples

# Create count data using DESeq2
dds = DESeq2::makeExampleDESeqDataSet()
countData = SummarizedExperiment::assay(dds)
sampleData = SummarizedExperiment::colData(dds)
# Create AnalysisDataSet
analysisDataSet = AnalysisDataSetFromMatrix(countData = countData,
sampleData = sampleData)
# Create AnalysisInfo
analysisInfo = AnalysisInfo(time = date(),
name = "test",
formula = ~ 1,
envir = analysisDataSet)
dseq = initDESeq2(analysisInfo)
dseq = estimateSizeFactorsDESeq2(dseq)

estimateSizeFactorsEdgeR

Second state of edgeR package differential expression analysis.

Description

This function is used as wrapper for the second possible step of all used differential expression
analysis packages used in GeneticAnalysisPipeline. It estimates size factors (aka normalization
factors) which could fit the count values properly for the several analysis method. Target is to get
robust values with focus to dispersion and variance.

Usage

estimateSizeFactorsEdgeR(edgeRdataSet, method = c("TMM", "RKE",
"upperquartile", "none"), verbose = 1, ...)
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Arguments

edgeRdataSet Object from DESeqDataSet class.

method TMM: Weighted trimmed mean of M-values.
RLE: Scaling factor method (like ratio in DESeq.
upperquartile: Scale factors are calculated using the 75 the counts for each
library.
none: All factors are set to 1.

verbose Integer value describing the verbose level (silent = 0, warnings = 1, ...)

Details

With edgeR, the size factors are estimated using the weighted trimmed mean of M-values according
to a given reference refColumn. If no reference is given (what would be in the most cases), the
sample with nearest upper quartile to the mean upper quartile is used.
For more information see calcNormFactors.

Value

DGEList object.

See Also

edgeR, limma: calcNormFactors
DESeq2: estimateSizeFactors

Examples

requireNamespace("edgeR")
countData = matrix(rnbinom(1e04, mu=5, size=2), ncol=4)
# Ensure that we have an integer matrix
storage.mode(countData) = "integer"
sampleData = data.frame(group = factor(rep(LETTERS[1:2], each = 2)))
# Create AnalysisDataSet
analysisDataSet = AnalysisDataSetFromMatrix(countData = countData,
sampleData = sampleData)
# Create AnalysisInfo
analysisInfo = AnalysisInfo(time = date(),
name = "test",
formula = ~ 1,
envir = analysisDataSet)
dgelist = initEdgeR(analysisInfo)
dgelist = estimateSizeFactorsEdgeR(dgelist)
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estimateSizeFactorsLimma

Second state of limma package differential expression analysis.

Description

This function is used as wrapper for the second possible step of all used differential expression
analysis packages used in GeneticAnalysisPipeline. It estimates size factors (aka normalization
factors) which could fit the count values properly for the several analysis method. Target is to get
robust values with focus to dispersion and variance.

Usage

estimateSizeFactorsLimma(limmaDataSet, method = c("TMM", "RKE",
"upperquartile", "none"), verbose = 1, ...)

Arguments

method TMM: Weighted trimmed mean of M-values.
RLE: Scaling factor method (like ratio in DESeq.
upperquartile: Scale factors are calculated using the 75 the counts for each
library.
none: All factors are set to 1.

verbose Integer value describing the verbose level (silent = 0, warnings = 1, ...)

Details

Limma is making usage from edgeR’s normalization methods:
The size factors are estimated using the weighted trimmed mean of M-values according to a given
reference refColumn. If no reference is given (what would be in the most cases), the sample with
nearest upper quartile to the mean upper quartile is used.
For more information see calcNormFactors.

Value

DGEList object.

See Also

edgeR, limma: calcNormFactors
DESeq2: estimateSizeFactors

Examples

requireNamespace("limma")
requireNamespace("edgeR")
countData = matrix(rnbinom(1e04, mu=5, size=2), ncol=4)
# Ensure that we have an integer matrix
storage.mode(countData) = "integer"
sampleData = data.frame(group = factor(rep(LETTERS[1:2], each = 2)))
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# Create AnalysisDataSet
analysisDataSet = AnalysisDataSetFromMatrix(countData = countData,
sampleData = sampleData)
# Create AnalysisInfo
analysisInfo = AnalysisInfo(time = date(),
name = "test",
formula = ~ 1,
envir = analysisDataSet)
dgelist = initLimma(analysisInfo)
dgelist = estimateSizeFactorsLimma(dgelist)

filterCountData This function serves possibilities to filter count matrices.

Description

Filtering counts is a recommended step before starting a differential expression analysis. The out-
come should be genes, where a group of interest exists, which is having a gene count lying above a
threshold (biological variance). Benefit should be a better False Discovery Rate and faster calcula-
tions. The easiest way, for example, would be to filter over a row sum.
cpm:
Filter genes below a given threshold using CPM function from EdgeR package. Calculation:
1e06∗count
totalcount per gene in a sample

Usage

filterCountData(x, method = c("cpm"), limColumn, limRow, verbose = 2, ...)

Arguments

x AnalysisDataSet or integer matrix which should be filtered.

method Method(s) which should be used to filter the count data. cpm: Counts per mil-
lion will be calculated over columns, using a threshold (limColumn). A sec-
ond threshold (limRow) will be used over row, telling the minimum amount that
(limColumn) has to be met, to keep a gene in the matrix.

limColumn Expression threshold per column (over all genes from one sample). Typically a
gene should have a count of 5 to 10 in a library.

limRow Minimum count of samples that should have cpm > thcolumn (over all sam-
ples). Typically the minimum sum of samples per group of interest.

Value

The filtered count matrix.

See Also

cpm
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Examples

# Create count data
cntA1 = c(0, 10000, 0, 10000, 1)
cntA2 = c(0, 12000, 0, 12000, 1)
cntA3 = c(0, 13000, 0, 13000, 1)
cntB1 = c(0, 0, 10000, 100, 1)
cntB2 = c(0, 0, 12000, 120, 1)
cntB3 = c(0, 0, 13000, 130, 1)
# Create simple count matrix example
countData = matrix(c(cntA1, cntA2, cntA3, cntB1, cntB2, cntB3), ncol = 6)
# We can use the function from edgeR directly to get a better feeling about
# the terms.
print(edgeR::cpm.default(countData))
# Filter removes first "zero" row, but not the last row with the nothing
# telling 1. This is caused by the low amount of rows and therefore high
# relative cpm value.
filterCountData(x = countData,
limColumn = 8,
limRow = 3)

fitModelTestDESeq2 Fourth state of DESeq2 package differential expression analysis.

Description

This function is used as wrapper for the fourth possible step of all used differential expression anal-
ysis packages used in GeneticAnalysisPipeline. In this functions, coefficients will be tested for
significance.

Usage

fitModelTestDESeq2(dseqDataSet, method = c("Wald", "LRT"), reducedFormula,
betaPrior = FALSE, minReplicatesForReplace = 7L, verbose = 1, ...)

Arguments

dseqDataSet Object from DESeqDataSet class.

method Kind of hypothesis test:
Wald: Wald test against zero.
LRT: Likelihood ratio tests. Two models are fitted to counts (ANODEV). A re-
duced formula must be supplied.

reducedFormula A reduced formula for ANODEV test, needed for LRT method.
minReplicatesForReplace

Integer value for the minimum group size (sample replicates) for outlier replace-
ment.

verbose Integer value describing the verbose level (silent = 0, warnings = 1, ...)
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Details

DESeq2 function makes standardly usage of the nbinomWaldTest function, using estimated standard
error of a log2 fold change. The beta prior feature is only available, if internal model.matrix is used.

Value

DESeqDataSet object with attached result.

See Also

DESeq2: Wald nbinomWaldTest
LRT nbinomLRT
Also for outlier replacement replaceOutliers.
edgeR: glmFit
glmLRT
glmQLFit
glmQLFTest
limma: contrasts.fit
eBayes

Examples

# Create count data using DESeq2
dds = DESeq2::makeExampleDESeqDataSet()
countData = SummarizedExperiment::assay(dds)
sampleData = SummarizedExperiment::colData(dds)
# Create AnalysisDataSet
analysisDataSet = AnalysisDataSetFromMatrix(countData = countData,
sampleData = sampleData)
analysisInfo = AnalysisInfo(time = date(),
name = "test",
formula = ~ 1,
envir = analysisDataSet)
dseq = initDESeq2(analysisInfo)
dseq = estimateSizeFactorsDESeq2(dseq)
dseq = estimateDispersionsDESeq2(dseq)
dseq = fitModelTestDESeq2(dseq)

fitModelTestEdgeR Fourth state of edgeR package differential expression analysis.

Description

This function is used as wrapper for the fourth possible step of all used differential expression anal-
ysis packages used in GeneticAnalysisPipeline. In this functions, coefficients will be tested for
significance.
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Usage

fitModelTestEdgeR(edgeRdataSet, method = c("Fit", "QL"), contrast = NULL,
robust = (method == "QL"), verbose = 1, ...)

Arguments

edgeRdataSet Object from DGEList class.

method Kind of hypothesis test:
Fit: Standard, using mglmLevenberg or mglmOneGroup for fitting and glmLRT
for testing.
QL: Quasi-likelihood method using Bayes for fitting and testing.

contrast Matrix or numeric vector, indicating the coefficients that will be tested to be
equal to zero.

robust Logical, if TRUE it will estimate the prior QL dispersion robustly (recommended).

verbose Integer value describing the verbose level (silent = 0, warnings = 1, ...)

Details

edgeR uses standardly in case of one-way layout designs (one factor) mglmOneGroup in background,
otherwise mglmLevenberg fitting is taking place.

Value

DGELRT object with attached result.

See Also

edgeR: glmFit
glmLRT
glmQLFit
glmQLFTest
limma: contrasts.fit
eBayes
DESeq2: Wald nbinomWaldTest
LRT nbinomLRT

Examples

requireNamespace("edgeR")
countData = matrix(rnbinom(1e04, mu=5, size=2), ncol=4)
# Ensure that we have an integer matrix
storage.mode(countData) = "integer"
sampleData = data.frame(group = factor(rep(LETTERS[1:2], each = 2)))
# Create AnalysisDataSet
analysisDataSet = AnalysisDataSetFromMatrix(countData = countData,
sampleData = sampleData)
# Create AnalysisInfo
analysisInfo = AnalysisInfo(time = date(),
name = "test",
formula = ~ group,
envir = analysisDataSet)
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dgelist = initEdgeR(analysisInfo)
dgelist = estimateSizeFactorsEdgeR(dgelist)
dgelist = estimateDispersionsEdgeR(dgelist)
dgelist = fitModelTestEdgeR(dgelist)

fitModelTestLimma Fourth state of limma package differential expression analysis.

Description

This function is used as wrapper for the fourth possible step of all used differential expression anal-
ysis packages used in GeneticAnalysisPipeline. In this functions, coefficients will be tested for
significance.

Usage

fitModelTestLimma(limmaDataSet, contrast, robust = FALSE, verbose = 1, ...)

Arguments

limmaDataSet Object from EList class.

contrast Numeric vector, indicating the coefficients that will be tested to be equal to zero.

robust Logical, if TRUE it will estimate the prior QL dispersion robustly.

verbose Integer value describing the verbose level (silent = 0, warnings = 1, ...)

Details

limma is making usage of lmfit or contrasts.fit. Last one rearranges the already fitted model,
to enable the possibility of the contrast usage. In both cases, eBayes is used for the F-Tests.

Value

MArrayLM object with attached result.

See Also

edgeR: glmFit
glmLRT
glmQLFit
glmQLFTest
limma: contrasts.fit
eBayes
DESeq2: Wald nbinomWaldTest
LRT nbinomLRT



30 GeneticAnalysisPipeline

Examples

requireNamespace("limma")
requireNamespace("edgeR")
countData = matrix(rnbinom(1e04, mu=5, size=2), ncol=4)
# Ensure that we have an integer matrix
storage.mode(countData) = "integer"
sampleData = data.frame(group = factor(rep(LETTERS[1:2], each = 2)))
# Create AnalysisDataSet
analysisDataSet = AnalysisDataSetFromMatrix(countData = countData,
sampleData = sampleData)
# Create AnalysisInfo
analysisInfo = AnalysisInfo(time = date(),
name = "test",
formula = ~ 1,
envir = analysisDataSet)
dgelist = initLimma(analysisInfo)
dgelist = estimateSizeFactorsLimma(dgelist)
dgelist = estimateDispersionsLimma(dgelist)
mArrayLM = fitModelTestLimma(dgelist)

GeneticAnalysisPipeline

GeneticAnalysisPipeline: A package which includes an easy to use
pipeline for differentially gene expression analysis

Description

The functions could be used interactively via R console, or through a command-line interface (abbr.:
CLI).

Command-Line Interface

Scripts could be found in library directory under ./extscript/cl.

R’s interactive Console

Example workflow could be found in library directory under ./extscript/tcgaMelanoma.R, or
./extscript/tcgaMelanoma.R.

Typical Workflow

1. Create link{AnalysisDataSet} with link{createAnalysisDataSet} and store assembled
clinical (phenotypic) and genetic data.
1.1 (optional) Generate plots with link{plotNA}, link{plotBar2dFacet}, link{plotBoxplot}.
2. Create link{AnalysisInfo} with link{createAnalysisInfo}.
2.1 (optional) Create plots using functions from 1.1 on the shrinked data, or using link{plotAnalysisInfo}
function.
3. (optional) Use Quality Assurance and Feature Detection methods to qualify the experimental
data, using link{runQualityAssurance} function together with link{plotQualityAssurance}.
4. (optional) Filter count data using link{filterCountData} function.
5. (optional) Loop between step 2., 3. and 4., until optimal data setup is approved.
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6. Start Differentially Expression Analysis with link{runDifferentialExpressionAnalysis}
function.
6.1 (optional) Stop by estimated dispersion and use link{plotPrioriObjects} for QA, loop be-
tween 2 and 6.1.
7. (optional) Plot results, using link{plotPrioriObjects}, link{plotPosterioriObjects}.
8. Create result tables using link{saveResults}.
9. (optional) Make a comparison between packages:
9.1 Join results using link{joinResults} method.
9.2 Plot Venn diagram with link{plotComparison}.
10. (optional) Make comparison to references, using link{compareResultsToRef} functionality.

initDESeq2 Initial state of DESeq2 package.

Description

This function is used as wrapper for the first possible step of all used differential expression analysis
packages used in GeneticAnalysisPipeline. It generates a package typical container including
sample informations and count data.

Usage

initDESeq2(analysisInfo, verbose = 2, ...)

Arguments

analysisInfo Object from AnalysisInfo class.

verbose Integer value describing the verbose level (silent = 0, warnings = 1, ...)

Value

DESeqDataSet object.

See Also

DESeq2: DESeqDataSetFromMatrix
edgeR, limma: DGEList

Examples

# Create count data using DESeq2
dds = DESeq2::makeExampleDESeqDataSet()
countData = SummarizedExperiment::assay(dds)
sampleData = SummarizedExperiment::colData(dds)
# Create AnalysisDataSet
analysisDataSet = AnalysisDataSetFromMatrix(countData = countData,
sampleData = sampleData)
# Create AnalysisInfo
analysisInfo = AnalysisInfo(time = date(),
name = "test",
formula = ~ 1,
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envir = analysisDataSet)
initDESeq2(analysisInfo)

initEdgeR Initial state of edgeR package.

Description

This function is used as wrapper for the first possible step of all used differential expression analysis
packages used in GeneticAnalysisPipeline. It generates a package typical container including
sample informations and count data.

Usage

initEdgeR(analysisInfo, verbose = 2, ...)

Arguments

analysisInfo Object from AnalysisInfo class.

verbose Integer value describing the verbose level (silent = 0, warnings = 1, ...)

Value

DGEList object.

See Also

edgeR, limma: DGEList
DESeq2: DESeqDataSetFromMatrix

Examples

requireNamespace("edgeR")
countData = matrix(rnbinom(1e04, mu=5, size=2), ncol=4)
# Ensure that we have an integer matrix
storage.mode(countData) = "integer"
sampleData = data.frame(group = factor(rep(LETTERS[1:2], each = 2)))
# Create AnalysisDataSet
analysisDataSet = AnalysisDataSetFromMatrix(countData = countData,
sampleData = sampleData)
# Create AnalysisInfo
analysisInfo = AnalysisInfo(time = date(),
name = "test",
formula = ~ 1,
envir = analysisDataSet)
initEdgeR(analysisInfo)



initLimma 33

initLimma Initial state of limma package.

Description

This function is used as wrapper for the first possible step of all used differential expression analysis
packages used in GeneticAnalysisPipeline. It generates a package typical container including
sample informations and count data.

Usage

initLimma(analysisInfo, verbose = 2, ...)

Arguments

analysisInfo Object from AnalysisInfo class.

verbose Integer value describing the verbose level (silent = 0, warnings = 1, ...)

See Also

edgeR, limma: DGEList
DESeq2: DESeqDataSetFromMatrix

Examples

requireNamespace("limma")
requireNamespace("edgeR")
countData = matrix(rnbinom(1e04, mu=5, size=2), ncol=4)
# Ensure that we have an integer matrix
storage.mode(countData) = "integer"
sampleData = data.frame(group = factor(rep(LETTERS[1:2], each = 2)))
# Create AnalysisDataSet
analysisDataSet = AnalysisDataSetFromMatrix(countData = countData,
sampleData = sampleData)
# Create AnalysisInfo
analysisInfo = AnalysisInfo(time = date(),
name = "test",
formula = ~ 1,
envir = analysisDataSet)
dgelist = initLimma(analysisInfo)

joinResults Joining result tables stored in a AnalysisResult object.

Description

This function could be used for comparison between packages.
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Usage

joinResults(listAnalysisResult, separator = "\t", prefixSeparator = "_",
joinMethod = c("outer", "inner"), tableNA = "", export = TRUE,
pathTables = paste0(".", .Platform$file.sep), file_extension = ".tsv",
verbose = 2, ...)

Arguments

listAnalysisResult

A vector or list with AnalysisResult objects and attached result(s).

separator Delimiter for columns used in resulting file.
prefixSeparator

Separator, which should be used between name of package and column label.

joinMethod Method(s) which should be used for joining.

tableNA Value for not existing values (outer join).

export Boolean if table should be written to hard drive.

pathTables Path to directory, which should be used for export.

file_extension File extension (should fit to separator).

verbose Integer value describing the verbose level (silent = 0, warnings = 1, ...)

Value

Vector with joined results.

See Also

runDifferentialExpressionAnalysis, AnalysisResult

normalizeResultsDESeq2

Normalize DESeq2 results.

Description

This function could be used to normalize outputs, to keep differences between packages minimal.
Target is to make synonyms and style uniform.

Usage

normalizeResultsDESeq2(result, alpha, resSortBy = c("padj"),
resSortDesc = FALSE, verbose = 1, ...)

Arguments

result Object from DESeqDataSet class.

alpha If given, results will be filtered above or equal value.

resSortBy Name of column(s) which should be used for the sort.

resSortDesc If true, results will be sorted descending.

verbose Integer value describing the verbose level (silent = 0, warnings = 1, ...)
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Value

Result as data.frame object.

normalizeResultsEdgeR Normalize edgeR results.

Description

This function could be used to normalize outputs, to keep differences between packages minimal.
Target is to make synonyms and style uniform.

Usage

normalizeResultsEdgeR(result, alpha, resSortBy = c("padj"),
resSortDesc = FALSE, verbose = 1, ...)

Arguments

result Object from DESeqDataSet class.

alpha If given, results will be filtered above or equal value.

resSortBy Name of column(s) which should be used for the sort.

resSortDesc If true, results will be sorted descending.

verbose Integer value describing the verbose level (silent = 0, warnings = 1, ...)

Value

Result as data.frame object.

normalizeResultsLimma Normalize limma results.

Description

This function could be used to normalize outputs, to keep differences between packages minimal.
Target is to make synonyms and style uniform.

Usage

normalizeResultsLimma(result, alpha, resSortBy = c("padj"),
resSortDesc = FALSE, verbose = 1, ...)

Arguments

result Object from DESeqDataSet class.

alpha If given, results will be filtered above or equal value.

resSortBy Name of column(s) which should be used for the sort.

resSortDesc If true, results will be sorted descending.

verbose Integer value describing the verbose level (silent = 0, warnings = 1, ...)
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Value

Result as data.frame object.

plotAnalysisInfo Plot Analysis Information Could be used after
link{makeAnalysisInfo}.

Description

Plot Analysis Information

Could be used after link{makeAnalysisInfo}.

Usage

plotAnalysisInfo(analysisInfo, plots = c("na", "group", "libsize"),
addArguments, path = paste0(".", .Platform$file.sep),
file_extension = ".svg", export_function = svg, verbose = 2, ...)

Arguments

analysisInfo Object from AnalysisInfo class.

plots Plot(s) which should be generated.

addArguments List with additional arguments for plot depending functions. Example: list("plot"
= alist("parameter" = "value"))

path Path to directory, which should be used for export.

file_extension File extension (should fit to export_function).
export_function

The function, which should be used for the export (e.g. svg).

verbose Integer value describing the verbose level (silent = 0, warnings = 1, ...)

See Also

AnalysisInfo, plotNA which is used for "na", plotBar2dFacet which is used for "group", plotLibSizeDist
which is used for "libsize"

plotBar2dFacet Wrapper to generate Barplots.

Description

plotBar2dFacet could be used to generate multiple conditional barplots at once, using a main
factor (x) and a formula (facets). This function kindly wraps ggplot with geom_bar and optional
facet_wrap. Individual coloring is made possible with the functions scale_fill_manual and
scale_fill_brewer.
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Usage

plotBar2dFacet(data, x, facets, addCountLabels = FALSE, simpleColor = TRUE,
ownColor, colorBrewerPalette = c("Accent", "Dark2", "Paired", "Pastel1",
"Pastel2", "Set1", "Set2", "Set3"), theme = c("gray", "bw", "linedraw",
"light", "dark", "minimal", "classic", "void"), export = TRUE,
path = paste0(".", .Platform$file.sep), filename = paste0("barplot",
file_extension), file_extension = ".svg", export_function = svg)

Arguments

data A data.frame including the wanted factors.

x String vector with the name of the factorial column for bottom x scale.

facets Optional formula or vector with factor(s) for top x scale.

addCountLabels Boolean value. A TRUE attaches count labels on bars.

simpleColor Optional logical value to switch standardly colored bars on or off.

ownColor Optional vector with colors to corresponding bars.

colorBrewerPalette

Optional character vector for RColorBrewer palette.

theme Optional ggplot2 theme. See package for more information.

export Boolean value, indicating if the plot should be only shown or exported.

path Path to directory, which should be used for export.

filename Name of the file, which should be exported.

file_extension File extension (should fit to export_function).

export_function

The function, which should be used for the export (e.g. svg).

See Also

ggplot, geom_bar

Examples

# Create exemplary sample data
gender = c(rep("male", times = 3), rep("female", times = 7))
group = c(rep(month.abb[1:2], 5))
data = data.frame(gender = gender, group = group)

plotBar2dFacet(data = data,
x = "gender",
facets = ~ gender + group,
colorBrewerPalette = "Dark2")
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plotBoxplot Wrapper for Boxplots generation.

Description

plotBoxplot could be used to generate multiple boxplots at once, using a factorial (x) and a nu-
meric (y) attribute. This function kindly wraps ggplot with geom_boxplot. SimpleColoring could
be chosen, if only the borders of the boxplots should be painted. Filling with individual colors is
made possible through the functions scale_fill_manual and scale_fill_brewer.

Usage

plotBoxplot(data, x, y, simpleColor = TRUE, ownColor,
colorBrewerPalette = c("Accent", "Dark2", "Paired", "Pastel1", "Pastel2",
"Set1", "Set2", "Set3"), theme = c("gray", "bw", "linedraw", "light",
"dark", "minimal", "classic", "void"), export = TRUE, path = paste0(".",
.Platform$file.sep), filename = paste0("boxplot", file_extension),
file_extension = ".svg", export_function = svg)

Arguments

data A data.frame including the wanted factors.

x String vector with the name of the factorial column for bottom x scale.

y String vector with the name of the numerical column for bottom y scale.

simpleColor Optional logical value to switch standardly colored boxborders on or off.

ownColor Optional vector with colors to corresponding boxplots (fill).
colorBrewerPalette

Optional character vector for RColorBrewer palette (fill).

theme Optional ggplot2 theme. See package for more information.

export Boolean value, indicating if the plot should be only shown or exported.

path Path to directory, which should be used for export.

filename Name of the file, which should be exported.

file_extension File extension (should fit to export_function).
export_function

The function, which should be used for the export (e.g. svg).

See Also

ggplot, geom_boxplot

Examples

# Create exemplary sample data
xData = c(rep("male", times = 3), rep("female", times = 7))
set.seed(100)
yData = runif(10)
sampleData = data.frame(xData, yData)

plotBoxplot(data = sampleData,
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x = "xData",
y = "yData",
colorBrewerPalette = "Dark2")

plotComparison Plot results from package comparison.

Description

This function makes it possible to compare the results between packages on a visual way.

Usage

plotComparison(listAnalysisResult, path = paste0(".", .Platform$file.sep),
plots = c("venn"), file_extension = ".svg", export_function = svg,
verbose = 2, ...)

Arguments

listAnalysisResult

A vector or list with AnalysisResult objects and attached posteriori lists.
path Path to directory, which should be used for export.
plots Vector including the names of the plots, which should be generated.
file_extension File extension (should fit to export_function).
export_function

The function, which should be used for the export (e.g. svg).
verbose Integer value describing the verbose level (silent = 0, warnings = 1, ...)

See Also

runDifferentialExpressionAnalysis, AnalysisResult

plotHeatMapDist Plots heatmap according to gene expression distance

Description

Wrapper for pheatmap. Calculate distance between columns in matrix and use output pheatmap.
SVG not supported, so PDF is used instead.

Usage

plotHeatMapDist(countData, sampleData, method = c("euclidean", "maximum",
"manhattan", "canberra", "binary", "minkowski"),
colorBrewerPalette = c("Blues", "BuGn", "BuPu", "GnBu", "Greens", "Greys",
"Oranges", "OrRd", "PuBu", "PuBuGn", "PuRd", "Purples", "RdPu", "Reds",
"YlGn", "YlGnBu", "YlOrBr", "YlOrRd"), export = TRUE, path = paste0(".",
.Platform$file.sep), filename = paste0("pheatmap_distance", file_extension),
file_extension = ".pdf")
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Arguments

countData A data.frame including the wanted factors.
sampleData A data.frame including the phenotypic data.
method The method which should be used for distance calculation.
colorBrewerPalette

Optional character vector for RColorBrewer palette.
export Boolean value, indicating if the plot should be only shown or exported.
path Path to directory, which should be used for export.
filename Name of the file, which should be exported.
file_extension File extension.

See Also

pheatmap, dist

Examples

# If you want to see a specific RColorBrewerPalette,
# you can use for example the command: display.brewer.pal(9,"Greens")

plotHeatMapExp Plots heatmap according to gene mean expression

Description

Wrapper for pheatmap. SVG not supported, so PDF is used instead.

Usage

plotHeatMapExp(countData, sampleData, group, descending = TRUE,
export = TRUE, path = paste0(".", .Platform$file.sep),
filename = paste0(ifelse(descending, "pheatmap_HighExpression",
"pheatmap_LowExpression"), file_extension), file_extension = ".pdf")

Arguments

countData A data.frame including the wanted factors.
sampleData A data.frame including the phenotypic data.
group A factor describing the group.
descending Top 100 highest, or lowest expressed gene (per mean).
export Boolean value, indicating if the plot should be only shown or exported.
path Path to directory, which should be used for export.
filename Name of the file, which should be exported.
file_extension File extension.

See Also

pheatmap
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plotLibSizeDist Plot lib size in millions per library.

Description

Plot lib size in millions per library.

Usage

plotLibSizeDist(countData, group, distMedianCnt, rotateX = TRUE,
simpleColor = TRUE, ownColor, colorBrewerPalette = c("Accent", "Dark2",
"Paired", "Pastel1", "Pastel2", "Set1", "Set2", "Set3"), theme = c("gray",
"bw", "linedraw", "light", "dark", "minimal", "classic", "void"),
addCountLabels = FALSE, title = "Library size per million",
xlab = "Library", ylab = "Library size ppm", export = TRUE,
path = paste0(".", .Platform$file.sep),
filename = paste0("barplot_libsize_ppm", file_extension),
file_extension = ".svg", export_function = svg)

Arguments

countData A data.frame including the wanted factors.
group A factor describing the group.
distMedianCnt Integer value that, if set, shrinks the result by the top distMedianCnt higest

distances to median over all libraries.
rotateX Switches between rotation of x labels.
simpleColor Optional logical value to switch standardly colored bars on or off.
ownColor Optional vector with colors to corresponding bars.
colorBrewerPalette

Optional character vector for RColorBrewer palette.
theme Optional ggplot2 theme. See package for more information.
addCountLabels Boolean. Adds count labels on top of bars if true.
title Title from plot.
xlab X label from plot.
ylab Y label from plot.
export Boolean value, indicating if the plot should be only shown or exported.
path Path to directory, which should be used for export.
filename Name of the file, which should be exported.
file_extension File extension (should fit to export_function
export_function

The function, which should be used for the export (e.g. svg).

Value

See ggplot.

See Also

ggplot
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plotMDS Plot gene expression distances between libraries

Description

Wrapper for plotMDS.

Usage

plotMDS(countData, group, export = TRUE, path = paste0(".",
.Platform$file.sep), filename = paste0("MDSplot", file_extension),
file_extension = ".svg", export_function = svg)

Arguments

countData A data.frame including the wanted factors.

group A factor describing the group.

export Boolean value, indicating if the plot should be only shown or exported.

path Path to directory, which should be used for export.

filename Name of the file, which should be exported.

file_extension File extension (should fit to export_function).

export_function

The function, which should be used for the export (e.g. svg).

See Also

plotMDS

plotMeanSd Plots standard deviation (variance) against mean.

Description

Wrapper for meanSdPlot.

Usage

plotMeanSd(countData, theme = c("gray", "bw", "linedraw", "light", "dark",
"minimal", "classic", "void"), export = TRUE, path = paste0(".",
.Platform$file.sep), filename = paste0("meanSdplot", file_extension),
file_extension = ".svg", export_function = svg)
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Arguments

countData A data.frame including the wanted factors.

theme Optional ggplot2 theme. See package for more information.

export Boolean value, indicating if the plot should be only shown or exported.

path Path to directory, which should be used for export.

filename Name of the file, which should be exported.

file_extension File extension (should fit to export_function).
export_function

The function, which should be used for the export (e.g. svg).

See Also

meanSdPlot

plotNA plotNA is generating a barplot, showing the amount of NA values per
column from the supported dataframe.

Description

plotNA is generating a barplot, showing the amount of NA values per column from the supported
dataframe.

Usage

plotNA(x, export = TRUE, path = paste0(".", .Platform$file.sep),
filename = paste0("barplot_NA", file_extension), file_extension = ".svg",
export_function = svg)

Arguments

x A data.frame including the NA values, which should be measured.

export Boolean value, indicating if the plot should be only shown or exported.

path Path to directory, which should be used for export.

filename Name of the file, which should be exported.

file_extension File extension (should fit to export_function and will be ignored if filename
is given.

export_function

The function, which should be used for the export (e.g. svg).

Value

See barplot.

See Also

barplot
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Examples

# Create exemplary sample data
sampleData = c(77, 1, 2, 3, NA, 4, NA, 9)
sampleData = data.frame(sampleData)
plotNA(sampleData, export = FALSE)

plotPCA DESeq2’s plotPCA

Description

The basis of this code is taken from plotPCA at plotPCA. Sorts genes by variance for Principal
Component Analysis.

Usage

plotPCA(countData, group, ntop = 500, theme = c("gray", "bw", "linedraw",
"light", "dark", "minimal", "classic", "void"), export = TRUE,
path = paste0(".", .Platform$file.sep), filename = paste0("PCAplot",
file_extension), file_extension = ".svg", export_function = svg)

Arguments

countData A data.frame including the wanted factors.

group A factor describing the group.

ntop Maximal count of genes, which should be used for PCA calculations. Genes
will be sorted internal from highest variance to lowest.

theme Optional ggplot2 theme. See package for more information.

export Boolean value, indicating if the plot should be only shown or exported.

path Path to directory, which should be used for export.

filename Name of the file, which should be exported.

file_extension File extension (should fit to export_function).

export_function

The function, which should be used for the export (e.g. svg).

See Also

plotPCA
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plotPosterioriDESeq2 Plot posteriori DESeq2 objects.

Description

Most packages serving plots for fitted model and similar. To enable this functionality, necessary
objects could be stored in AnalysisResult in the posteriori list.

Usage

plotPosterioriDESeq2(lPostObj, result, path = paste0(".", .Platform$file.sep),
export = TRUE, file_extension = ".svg", export_function = svg,
verbose = 1)

Arguments

lPostObj List with posteriori object.
result Result data.table object.
path Path to directory, which should be used for export.
export Boolean value, indicating if the plot should be only shown or exported.
file_extension File extension (should fit to export_function).
export_function

The function, which should be used for the export (e.g. svg).
verbose Integer value describing the verbose level (silent = 0, warnings = 1, ...)

plotPosterioriEdgeR Plot posteriori edgeR objects.

Description

Most packages serving plots for fitted model and similar. To enable this functionality, necessary
objects could be stored in AnalysisResult in the posteriori list.

Usage

plotPosterioriEdgeR(lPostObj, result, path = paste0(".", .Platform$file.sep),
export = TRUE, file_extension = ".svg", export_function = svg,
verbose = 1)

Arguments

lPostObj List with posteriori object.
result Result data.table object.
path Path to directory, which should be used for export.
export Boolean value, indicating if the plot should be only shown or exported.
file_extension File extension (should fit to export_function).
export_function

The function, which should be used for the export (e.g. svg).
verbose Integer value describing the verbose level (silent = 0, warnings = 1, ...)
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plotPosterioriLimma Plot posteriori limma objects.

Description

Most packages serving plots for fitted model and similar. To enable this functionality, necessary
objects could be stored in AnalysisResult in the posteriori list.

Usage

plotPosterioriLimma(lPostObj, result, path = paste0(".", .Platform$file.sep),
export = TRUE, file_extension = ".svg", export_function = svg,
verbose = 1)

Arguments

lPostObj List with posteriori object.

result Result data.table object.

path Path to directory, which should be used for export.

export Boolean value, indicating if the plot should be only shown or exported.

file_extension File extension (should fit to export_function).
export_function

The function, which should be used for the export (e.g. svg).

verbose Integer value describing the verbose level (silent = 0, warnings = 1, ...)

plotPosterioriObjects Plot package depending posteriori information

Description

Quality Assurance using objects stored in posteriori list in a AnalysisResult object.

Usage

plotPosterioriObjects(listAnalysisResult, path = paste0(".",
.Platform$file.sep), file_extension = ".svg", export_function = svg,
verbose = 2, ...)

Arguments

listAnalysisResult

A vector or list with AnalysisResult objects and attached posteriori lists.

path Path to directory, which should be used for export.

file_extension File extension (should fit to export_function).
export_function

The function, which should be used for the export (e.g. svg).

verbose Integer value describing the verbose level (silent = 0, warnings = 1, ...)
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See Also

runDifferentialExpressionAnalysis, AnalysisResult

plotPrioriDESeq2 Plot priori DESeq2 objects.

Description

Most packages serving plots for dispersion estimation and similar. To enable this functionality,
necessary objects could be stored in AnalysisResult in the priori list.

Usage

plotPrioriDESeq2(lPrioriObj, path = paste0(".", .Platform$file.sep),
export = TRUE, file_extension = ".svg", export_function = svg,
verbose = 1)

Arguments

lPrioriObj List with priori object.
path Path to directory, which should be used for export.
export Boolean value, indicating if the plot should be only shown or exported.
file_extension File extension (should fit to export_function).
export_function

The function, which should be used for the export (e.g. svg).
verbose Integer value describing the verbose level (silent = 0, warnings = 1, ...)

plotPrioriEdgeR Plot priori edgeR objects.

Description

Most packages serving plots for dispersion estimation and similar. To enable this functionality,
necessary objects could be stored in AnalysisResult in the priori list.

Usage

plotPrioriEdgeR(lPrioriObj, path = paste0(".", .Platform$file.sep),
export = TRUE, file_extension = ".svg", export_function = svg,
verbose = 1)

Arguments

lPrioriObj List with priori object.
path Path to directory, which should be used for export.
export Boolean value, indicating if the plot should be only shown or exported.
file_extension File extension (should fit to export_function).
export_function

The function, which should be used for the export (e.g. svg).
verbose Integer value describing the verbose level (silent = 0, warnings = 1, ...)
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plotPrioriLimma Plot priori limma objects.

Description

Most packages serving plots for dispersion estimation and similar. To enable this functionality,
necessary objects could be stored in AnalysisResult in the priori list.

Usage

plotPrioriLimma(lPrioriObj, path = paste0(".", .Platform$file.sep),
export = TRUE, file_extension = ".svg", export_function = svg,
verbose = 1)

Arguments

lPrioriObj List with priori object.
path Path to directory, which should be used for export.
export Boolean value, indicating if the plot should be only shown or exported.
file_extension File extension (should fit to export_function).
export_function

The function, which should be used for the export (e.g. svg).
verbose Integer value describing the verbose level (silent = 0, warnings = 1, ...)

plotPrioriObjects Plot package depending priori information

Description

Quality Assurance using objects stored in priori list in a AnalysisResult object.

Usage

plotPrioriObjects(listAnalysisResult, path = paste0(".", .Platform$file.sep),
file_extension = ".svg", export_function = svg, verbose = 2, ...)

Arguments

listAnalysisResult

A vector or list with AnalysisResult objects and attached priori lists.
path Path to directory, which should be used for export.
file_extension File extension (should fit to export_function).
export_function

The function, which should be used for the export (e.g. svg).
verbose Integer value describing the verbose level (silent = 0, warnings = 1, ...)

See Also

runDifferentialExpressionAnalysis, AnalysisResult
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plotQualityAssurance Plot Quality Assurance information

Description

Quality Assurance of (typically) normalized genetic count data. For more information about the
used plots, please visit the links shown at the bottom of this description.

Usage

plotQualityAssurance(listQA, sampleData, group, plots = c("sd", "mds", "pca",
"hmExpDesc", "hmExpAsc", "hmDist"), addArguments, path = paste0(".",
.Platform$file.sep), file_extension = ".svg", export_function = svg,
verbose = 2, ...)

Arguments

listQA A vector or list with QualityAssuranceResult objects.

sampleData sampleData from corresponding AnalysisDataSet object.

group group from corresponding AnalysisInfo object.

plots Plot(s) which should be generated.

addArguments List with additional arguments for plot depending functions. Example: list("plot"
= alist("parameter" = "value"))

path Path to directory, which should be used for export.

file_extension File extension (should fit to export_function).
export_function

The function, which should be used for the export (e.g. svg).

verbose Integer value describing the verbose level (silent = 0, warnings = 1, ...)

See Also

runQualityAssurance, AnalysisInfo, plotMeanSd, plotMDS, plotPCA, plotHeatMapExp, plotHeatMapDist

plotVennDiagram Plots a venn diagram.

Description

For additional parameters see venn.diagram.

Usage

plotVennDiagram(universe, export = TRUE, path = paste0(".",
.Platform$file.sep), filename = paste0("vennDiagram", file_extension),
file_extension = ".svg", export_function = svg, fill = c("steelblue",
"seagreen", "firebrick1", "cornflowerblue"), col = "transparent",
alpha = 0.2, fontfamily = "serif", fontface = "bold", cex = 4,
cat.cex = 2.5, cat.fontfamily = "serif", ...)
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Arguments

universe List with package labels as names and id’s as value. For example: list("edgeR"
= c("ID1, "ID2"), "DESeq2" = c("ID2"), ...)

export Boolean value, indicating if the plot should be only shown or exported.

path Path to directory, which should be used for export.

filename Name of the file, which should be exported.

file_extension File extension (should fit to export_function

export_function

The function, which should be used for the export (e.g. svg).

See Also

venn.diagram

QualityAssuranceResult-class

QualityAssuranceResult class and constructors

Description

QualityAssuranceResult acts as container for processed quality assurance informations by us-
ing GeneticAnalysisPipeline. It simply stores the name from a used method together with the
transformed count data.

Usage

QualityAssuranceResult(method, result, ...)

method(object)

method(object, ...) <- value

## S4 method for signature 'character,matrix'
QualityAssuranceResult(method, result, ...)

## S4 method for signature 'QualityAssuranceResult'
method(object)

## S4 replacement method for signature 'QualityAssuranceResult,character'
method(object) <- value

## S4 method for signature 'QualityAssuranceResult'
result(object)

## S4 replacement method for signature 'QualityAssuranceResult,matrix'
result(object) <- value

## S4 method for signature 'QualityAssuranceResult'
show(object)
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Slots

method Character vector telling the used method for normalization.

result Numeric matrix with normalized counts.

Examples

countData = matrix(1:100, ncol = 4, dimnames = list(1:25, 1:4))
logCount = log2(countData)
qaResult = QualityAssuranceResult(method = "log2",
result = logCount,
)

runDifferentialExpressionAnalysis

Differential Expression Analysis

Description

This function is the entrance to all attached DEA packages form this pipeline. Previous steps that
should, at minimum, have been done already:

• link{createAnalysisDataSet}

• link{createAnalysisInfo}

• link{filterCountData}

Usage

runDifferentialExpressionAnalysis(analysisInfo, listAnalysisResult,
packages = c("DESeq2", "edgeR", "limma"), addArguments,
isPrioriOnly = FALSE, alpha = 0.05, resSortBy = "padj",
resSortDesc = FALSE, verbose = 2, ...)

Arguments

analysisInfo Object from AnalysisInfo class.
listAnalysisResult

To resume a analysis which has been exited on priori stage.

packages Package(s) which should be used for the analysis.

addArguments List with additional arguments for each package depending functions. Example:
list("DESeq2" = alist("estimateDispersions" = alist("method" = "parametric"))).

isPrioriOnly If TRUE, function exits on priori (dispersion is known).

alpha Alpha value for adjusted p-value.

resSortBy Name of column(s) which should be used for the sort.

resSortDesc Boolean value for descending ordering.

verbose Integer value describing the verbose level (silent = 0, warnings = 1, ...)
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Details

This function can be started and left in two different states:

• State 1: A dispersion estimation is stored in every AnalysisResult object at prioriObject.
This list could be used to print plots, or to resume the analysis.

• State 2: A dispersion estimation is stored in every AnalysisResult object at prioriObject.
Also information about the fitting model process could be stored into the posterioriObject
and the standardized result table into the result field.

Value

A vector with AnalysisResult objects.

See Also

AnalysisResult

runQualityAssurance Make count data ready for quality assurance.

Description

This functions serves possibilities to normalize counts for Quality Assurance purposes. Besides
raw, which is left to explore the original counts, the output could be used for clustering and ma-
chine learning algorithms.
raw:
Counts are left original. This option should be used with caution, because many algorithms and
therefore plots will not work accurate.
log2:
Common way is to transform counts into log2 scale. Note that this option intensely amplifies small
values.
vst:
The variance stabilizing transformation from the package DESeq2 (see varianceStabilizingTransformation)
is making usage of normalization factors to reduce variance along the mean values (to get ho-
moscedastic data). Library sizes (column sums) will also be used for the transformation.
rlog:
rlogTransformation coming with the DESeq2 package (see (see rlog). Data will be transformed
to log2 scale with respect to library size. If size factors varying widely, this method will be work
more robust as vst.

Usage

runQualityAssurance(x, method = c("raw", "log2", "vst", "rlog"), addArguments,
verbose = 2, ...)

Arguments

x Count matrix, for example from a AnalysisInfo object.
method Method(s) that should be used.
addArguments List with additional arguments for package depending functions. Example:

list("method" = alist("parameter" = "value"))
verbose Integer value describing the verbose level (silent = 0, warnings = 1, ...)
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Value

A vector with QualityAssuranceResult objects. E.g.: list("rlog" = cntMatrix)

See Also

rlog, varianceStabilizingTransformation, AnalysisInfo, AnalysisResult

saveResults Stores result tables from AnalysisResult object.

Description

Stores result tables from AnalysisResult object.

Usage

saveResults(listAnalysisResult, separator = "\t", path = paste0(".",
.Platform$file.sep), file_extension = ".tsv", verbose = 2, ...)

Arguments

listAnalysisResult

A vector or list with AnalysisResult objects and attached result.

separator Delimiter for columns used in resulting file.

path Path to directory, which should be used for export.

file_extension File extension (should fit to export_function).

verbose Integer value describing the verbose level (silent = 0, warnings = 1, ...)

See Also

runDifferentialExpressionAnalysis, AnalysisResult

serializeAnalysis Serialize an object from GeneticAnalysisPipeline pipeline.

Description

This function wraps saveRDS and could be used to serialize objects. The file will be saved in binary
format and could be compressed.

Usage

serializeAnalysis(object, file, compression = c("gzip", "bzip2", "xz"),
verbose = 2, ...)
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Arguments

object Object for serialization.

file Path to which the file should be saved.

compression Optional compression method (gzip, bzip, xz.

verbose Integer value describing the verbose level (silent = 0, warnings = 1, ...)

Value

Boolean status.

See Also

saveRDS, serialize.

unserializeAnalysis Unserialize an object from GeneticAnalysisPipeline pipeline.

Description

This function wraps readRDS and could be used to unserialize objects.

Usage

unserializeAnalysis(file, verbose = 2, ...)

Arguments

file Path from which the file should be loaded.

verbose Set verbosity level.

Value

Boolean status.

See Also

readRDS, unserialize.
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