

Hochschule Darmstadt

Fachbereich Informatik

Integrating Clinical Decision Support in a Product

Line for Electronic Health Record Management

Abschlussarbeit zur Erlangung des akademischen Grades

Master of Science (M. Sc.)

vorgelegt von

 Daniel Ebanja (726045)

Referent: Prof. Dr. Bernhard Humm

Korreferent: Prof. Dr. Ralf Hahn

Ausgabedatum: 15.02.2018

Abgabedatum: 15.08.2018

ii

Erklärung

Ich versichere hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine anderen

als die im Literaturverzeichnis angegebenen Quellen benutzt habe. Alle Stellen, die wörtlich

oder sinngemäß aus veröffentlichten oder noch nicht veröffentlichten Quellen entnommen sind,

sind als solche kenntlich gemacht. Die Zeichnungen oder Abbildungen in dieser Arbeit sind

von mir selbst erstellt worden oder mit einem entsprechenden Quellennachweis versehen. Diese

Arbeit ist in gleicher oder ähnlicher Form noch bei keiner anderen Prüfungsbehörde eingereicht

worden.

Darmstadt, 15. August 2018 __________________________

iii

Abstract

Der 1999 erschienene Bericht "To Err is Human" des institute of medicine zeigte auf, dass

medizinische Fehler zu mindestens 98.000 Todesfällen pro Jahr führen. Zur Lösung dieses

Problems wurde die Anwendung von Informationstechnologie im Gesundheitswesen

vorgeschlagen und weitgehend übernommen.

Elektronische Patientenaktensysteme (auch EHR-Systeme genannt) und computergestützte

Auftragsannahmesysteme (auch CPOE-Systeme genannt) sind für die Verbesserung der

Patientensicherheit und der Qualität der Gesundheitsversorgung unerlässlich. Auch die

Einführung klinischer Entscheidungsunterstützungssysteme (auch CDS-Systeme genannt) zur

Fehlervermeidung und -erkennung ist eine Hauptvoraussetzung für den sinnvollen Einsatz von

EHR-Systemen.

Der verbreitete Einsatz von EHR- und CDS-Systemen in der Praxis führt dazu, dass

Anwendungsanbieter gleichzeitig mit mehreren Anforderungen für ähnliche Produkte (EHR-

und CDS-Systeme) konfrontiert werden.

Zur Lösung dieser Problematik schlägt die vorliegende Arbeit die Einführung eines

Produktlinienansatzes vor, indem sie darauf abzielt, CDS-Systeme in (vorhandene) EHR-

Anwendungen einer Produktlinie über Core Assets zu integrieren.

Die Literatur zeigt, dass der Informationsbedarf der Ärzte am Behandlungsort mit der Diagnose

von Krankheiten, der Suche nach den besten Therapien und Medikamentenverordnungen

zusammenhängt. Ärzte decken ihren Informationsbedarf dabei hauptsächlich mithilfe

internetbasierter Ressourcen.

Hinsichtlich der Architektur von CDS-Systemen zeigen Studien, dass die IT-Branche im

Gesundheitswesen weitgehend SOA-basierte Ansätze anwendet. Diese Thesis setzt deshalb auf

SOA-basierte Ansätze.

In dieser Thesis werden CDS Core Assets entworfen und entwickelt, welche

patientenspezifische Empfehlungen durch den Einsatz von REST-

Anwendungsprogrammierschnittstellen (APIs) von medizinischen

Informationsabrufressourcen wie PubMed, RxNav, OpenFDA usw. liefern.

Die CDS Core Assets stellen Funktionen zur Überprüfung von Wechselwirkungen mit anderen

Arzneimitteln und unerwünschten Arzneimittelwirkungen zur Verfügung. Sie bieten auch

Funktionen für die Suche nach klinischen Studien, evidenzbasierte medizinische Leitlinien und

medizinische Publikationen. Die beispielhafte Umsetzung der CDS Core Assets wird anhand

einer bestehenden Beispiel-EHR-Anwendung mit integriertem CDS demonstriert.

iv

Abstract

The 1999 report of the institute of medicine “To Err is Human” revealed, that medical errors

account for at least 98000 deaths per year. To address this problem, the application of

information technology to the field of health care has been proposed and widely adopted.

Electronic Health Record (EHR) systems and Computerized Physician Order Entry (CPOE)

systems are essential for improving patient safety and the quality of health care. Also, the

adoption of clinical decision support systems (CDS-Systems) for error prevention and detection

is a main requirement for meaningful use of EHR systems. The wide adoption of EHR systems

and CDS-Systems result in application providers being faced with demands for several similar

products at the same time.

This thesis aims to addresses the problems faced by physicians and application providers.

Literature reveals, that physicians’ needs at the point of care are related to diagnosing patients’

issues, finding best therapies and drug prescriptions and that Physicians refer mostly to internet-

based resources to meet their information needs.

Furthermore, literature is reviewed to identify architectural approaches for developing CDS-

Systems. An evaluation of found approaches reveal that SOA-based approaches best suit the

requirements of this thesis.

This thesis therefore proposes an approach for integrating CDS into EHR via SOA-based CDS-

Services. The proposed concept places an API in front of the CDS-Services, making them

available via a web service. In this way, the CDS-Services are accessible for EHR applications

and other health information systems e.g. CPOE. The CDS-Services include a drug interaction

service, a drug adverse events service, a clinical trials service, an EBM guideline service and a

literature service. The CDS-Services provide patient-specific recommendations by accessing

other medical information services, like PubMed, RxNav, OpenFDA, ClinicalTrials.gov etc.

The proposed concept is applied to provide CDS-Services in EHR applications of the SAGE-

CARE product line. To this purpose, core asset development activities are performed based on

the SPLE Framework of (Pohl et al. 2005). The feasibility of the proposed concept and the

developed CDS core assets is asserted by prototyping a sample EHR application with integrated

CDS-Services.

v

Contents

1 Introduction ... 1

2 Problem statement ... 3

3 Background ... 4

3.1 Electronic Health Records .. 4

3.2 Health Level Seven Reference Information Model .. 4

3.3 Clinical Decision Support Systems .. 5

3.4 Software product lines .. 8

3.4.1 Software product line engineering .. 9

3.4.2 Domain engineering ... 10

3.4.3 Application engineering ... 14

3.5 Cloud computing and Multitenancy ... 15

4 CDS Information ... 17

4.1 Physicians’ information needs .. 17

4.2 Information retrieval resources for CDS content ... 19

5 Architectures for Clinical Decision Support Systems ... 21

5.1 Evolution of CDS architectures .. 21

5.1.1 Stand-alone CDS-Systems .. 22

5.1.2 Integrated CDS-Systems... 22

5.1.3 Standards-based CDS-Systems... 22

5.1.4 Service oriented CDS-Systems ... 23

5.2 CDS-System design components.. 24

6 SOA-based CDS-Services ... 26

6.1 Drug interaction service.. 28

6.2 Drug adverse events service ... 29

6.3 Clinical trial service .. 30

6.4 Literature service .. 31

6.5 Terminology service ... 33

vi

7 The SAGE-CARE product line use case ... 36

7.1 Product Management .. 36

7.2 Domain requirements engineering.. 36

7.2.1 Commonality analysis .. 36

7.2.2 Variability analysis ... 38

7.3 Domain design .. 41

7.4 Domain realization ... 45

7.4.1 SAGE-CARE_Core project .. 46

7.4.2 SAGE-CARE_RESTful_WebAPI.. 47

7.4.3 SAGE-CARE_Client project .. 47

7.5 Domain Testing using Sample Application Strategy ... 55

7.5.1 Overview of the sample EHR application .. 55

7.5.2 Core project .. 56

7.5.3 RESTful_WebAPI .. 57

7.5.4 Client project .. 59

8 Evaluation.. 61

9 Related Work... 64

10 Conclusion and Future Work .. 65

10.1 Conclusion .. 65

10.2 Future Work .. 66

11 Appendices .. 67

11.1 Appendix A... 67

11.2 Appendix B ... 69

11.3 Appendix C ... 70

11.4 Appendix D... 71

11.5 Appendix E ... 72

11.6 Appendix F ... 73

11.7 Appendix H... 74

11.8 Appendix I .. 75

vii

11.9 Appendix J .. 76

12 Publication bibliography ... 77

viii

List of Figures

Figure 1 Essential Product Line Activities (Clements and Northrop 2009, p. 30) 9

Figure 2. The software product line engineering framework (Pohl et al. 2005, p. 22) 10

Figure 3 Graphical notation for variability models (Pohl et al. 2005, p. 85) 12

Figure 4 Authentication mechanism variation point using OVM vs UML 13

Figure 5. What is SaaS (Adapted from (What is SaaS? Software as a Service | Microsoft Azure))

 .. 15

Figure 6. Multitenant App with database per tenant .. 16

Figure 7. Multitenant App with multi-tenant database ... 16

Figure 8 A schematic drawing of the four-phase model for clinical decision support (Wright

and Sittig 2008) .. 21

Figure 9 Sample CDS system architecture (Adapted from (Rodriguez-Loya and Kawamoto

2016)).. 23

Figure 10 A conceptual model of CDS design components and their interactions with the host

application environment. (Greenes 2014b) .. 24

Figure 11 CDS-Services in a SOA-based Health information systems environment 26

Figure 12 CDS-Services architecture ... 27

Figure 13. OVM enabled application services ... 38

Figure 14 OVM perceived locus of control .. 39

Figure 15 OVM supported medical specialties .. 39

Figure 16 OVM enabled CDS-Services ... 40

Figure 17 OVM drug interaction information sources ... 40

Figure 18 SAGE-CARE SPL Reference Architecture with CDS-Services 41

Figure 19 CDS core assets in SAGE-CARE Presentation Layer ... 44

Figure 20 SAGE-CARE SPL projects .. 45

Figure 21 CDS Core Assets in SAGE-CARE_Core project .. 46

Figure 22 CDS Core Assets in SAGE-CARE_Client project .. 48

Figure 23 CDS-Services user interaction interface .. 49

Figure 24 Drug interaction service user interface .. 50

Figure 25 Additional information in drug interaction service user interface 50

Figure 26 Autocomplete service in drug interaction user interface.. 51

Figure 27 Entering Medications for interaction check in drug interaction service user interface

 .. 51

Figure 28 Autosuggest service in drug adverse event service user interface 52

Figure 29 Verifying drug adverse events of non-prescribed drugs .. 52

ix

Figure 30 Clinical trial service user interface ... 52

Figure 31 ClinicalTrials.gov patient-specific result page ... 53

Figure 32 EBM Guidelines service user interface .. 53

Figure 33 Literature service user interface ... 54

Figure 34 Terminology service autosuggest in EHR medication field 55

Figure 35 Breast cancer SampleIssue ... 56

Figure 36 Introducing the Sample folder for Sample application classes 56

Figure 37 CDS-Service classes for Sample application in SAGE-CARE core project 57

Figure 38 Creating the Sample application controller .. 58

Figure 39 Sample application core assets in the client project ... 59

Figure 40 Drug interaction service sequence diagram ... 72

Figure 41 Drug adverse events service sequence diagram ... 73

Figure 42 SAGE-CARE Information Model .. 74

Figure 43 HL7 Reference Information Model (HL7 RIM) .. 76

x

List of Tables

Table 1 Principal purposes for CDS, and the key methodologies used (Greenes 2014b) 7

Table 2. List of information needs of physicians and nurses commonly mentioned in the review

of literature (Clarke et al. 2013) ... 17

Table 3 CDS-System information services and addressed information needs 18

Table 4. List of information sources utilized by physician and nurses (Clarke et al. 2013) 19

Table 5 CDS-Services, selected information retrieval resources ... 20

Table 6 Advantages and disadvantages of Stand-alone CDS-Systems (Wright and Sittig 2008)

 .. 22

Table 7 Advantages and disadvantages of tightly coupled integrated CDS-Systems (Wright and

Sittig 2008) ... 22

Table 8 Advantages and disadvantages of standards-based CDS-Systems (Wright and Sittig

2008) ... 22

Table 9 CDS-Services interface specifications .. 28

Table 10 Principal purposes for CDS, and the key methodologies used (Greenes 2014a) 37

Table 11 Overview of available interface implementations for CDS-Services 47

Table 12 Drug Information Data Sources (Johannes Idelhauser 2016).................................... 68

Table 13 Identified data sources for the clinical trial locator (Johannes Idelhauser 2016) 69

Table 14 EBM Recommendation Sources (Johannes Idelhauser 2016)................................... 70

Table 15 Literature Service Data Sources (Johannes Idelhauser 2016) 71

xi

Listings

Listing 1 Using the drug interaction service ... 28

Listing 2 Drug interaction service interface - IDrugInteractionService 29

Listing 3 Drug interaction service interface response data format – DrugInteraction 29

Listing 4 Drug adverse events service interface – IDrugAdverseEventsService 29

Listing 5 Drug adverse events service response data format - DrugAdverseEvents 29

Listing 6 Drug adverse events service response data format – AdverseEvent 30

Listing 7 Clinical trial service interface - IClinicalTrialService .. 30

Listing 8 Clinical trial service parameter data format – ClinicalTrialQuery 30

Listing 9 Specification of the gender data type .. 31

Listing 10 Literature service interface – ILiteratureService ... 31

Listing 11 EHR mapping for literature service – SearchField ... 31

Listing 12 EhrField data type for EHR mapping in literature service 32

Listing 13 Literature service response data format - Literature ... 32

Listing 14 Terminology service interface - ITerminologyService ... 33

Listing 15 Terminology service response data format -Term .. 34

Listing 16 Terminology service parameter data format ... 35

Listing 17 Using the drug interaction service ... 47

Listing 18 One liner for displaying CDS-Services in EHR application 49

Listing 19 Using the Sample drug interaction CDS-Service - SampleDrugInteractionService

 .. 57

Listing 20 Specifying the Sample application Web API in SampleCDSServicesController.cs

 .. 58

Listing 21 SamplePatientRecordView.html - introducing CDS-Services UIs in the sample EHR

application .. 60

Listing 22 SAGE-CARE_Client configuration file template CDS-Systemervices.html 75

xii

Acronyms

ANSI American National Standard Institute

API Application Programming Interface

CDS-Service Clinical Decision Support Service

CDS Clinical Decision Support

CDS-System Clinical Decision Support System

CIS Clinical Information System

CPOE Computer-based Physician Order Entry

CRUD Create, Red, Update, Delete

DPL Dynamic product line

EBM Evidence-Based Medicine

EHR Electronic Health Record

HL7 Health Level 7

ISO International Organization for Standardization

IaaS Infrastructure as a Service

IIS Internet Information Services

Ids Identifiers

JSON JavaScript Object Notation

LOC Lines of Code

MIS Medical Information Service

MS Medical Specialty

NCCN National Comprehensive Cancer Network

NCCN National Comprehensive Cancer Network

NLM U.S. National Library of Medicine

OVM Orthogonal variability model

ORM Object-relational mapper

PaaS Platform as a Service

PL Product Line

REST Representational State Transfer

RIM Reference Information Model

RSA Rivest-Shamir-Adleman

SaaS Software as a Service

SOA Service-Oriented Architecture

SQL Structured Query Language

SAGE-CARE SemAntically integrating Genomics with Electronic health records for

Cancer CARE

SAS Sample Application Strategy

SPL Software Product Line

SPLE Software Product Line Engineering

Time to market TTM

TS Technical Service

UASD University of Applied Sciences Darmstadt

UML Unified modeling language

VM Virtual MachineVirtual Machine

1

1 Introduction

The 1999 report of the institute of medicine “To Err is Human”, revealed that medical errors

account for at least 98000 deaths per year (Kohn et al. 2000). Health informatics focuses on the

application of information technology to the field of Health care with the goal of improving

patient safety and the quality of care. (HSRIC: Health Informatics 2018). Electronic Health

Record (EHR) systems, Computer-based Physician Order Entry (CPOE) systems and Clinical

Decision Support Systems (CDS-System) are suggested approaches to achieve improvements

in patient safety and the quality of health care (Bates et al. 1998; Kohn et al. 2000; National

Academies Press (US) 2001).

An EHR can be defined as “a digital version of a patient’s paper chart.” (HealthIT.gov 2018)

EHRs “contain a patient’s medical history, diagnoses, medications ” (HealthIT.gov 2018).

EHRs promote the implementation of clinical decision support to assist physicians at the point

of care. A CDS-System provides recommendations to assist physicians in various aspects of

healthcare that include but are not limited to: diagnosing health conditions, finding best

therapies and drug prescriptions etc.

In 2014, the SAGE-CARE (SemAntically integrating Genomics with Electronic health records

for Cancer CARE) project was launched. SAGE-CARE is funded by the European Union’s

Horizon 2020 research and innovation program under the Marie Skaodowska-Curie grant

agreement No 644186. The aim of the project is “to bring together subject matter experts from

the academic and non-academic sectors to create a holistic informatics platform for rapidly

integrating genomic sequences, electronic health records (EHRs) and research repositories to

enable personalised medicine strategies for malignant melanoma treatment.” (COMM/RTD)

In partnership with NSilico Lifescience Ltd. Within the SAGE-CARE Project, work has been

performed at the University of Applied Sciences in Darmstadt (UASD) to develop an EHR with

an integrated CDS-System for malignant melanoma. The EHR and CDS-System use a data

model conform to the Health Level 7 (HL7) Reference Information Model (RIM).

This thesis emerges as part of the efforts performed at the UASD. Several thesis and papers

have been written to present the progress of the work at this site. (Humm and Walsh 2015)

present a simplified EHR application for management of melanoma patient data. In (Beez et al.

2015) present a semantic automatic suggest service that enhances data entry into the free text

fields of the EHR and enforces the use of a normalized medical vocabulary. In (Ulrich Beez

2015), the EHR is extended, to integrate a CDS-System that retrieves relevant medical

publications based on patient-specific data from the EHR. (Johannes Idelhauser 2016),

2

discusses the information needs of physicians at the point of care, and physicians’ information

seeking behaviour. (Johannes Idelhauser 2016) extends the CDS-System functionality of the

EHR by implementing a drug interaction service. (Tino Landmann 2017) presents a medical

information service that displays an evidence-based medical guideline for the treatment of

malignant melanoma.

Furthermore, (Patrick Spitzer 2016) presents concepts for a dynamic product line (DPL) of

EHR applications for cancer care. The presented product line approach enables parallel

development of multiple EHR applications targeting differing medical specialities. Advantages

of adopting a product line are e.g. product quality enhancements, improved time to market

(TTM), reduction of development costs and maintenance efforts (Pohl et al. 2005).

The aim of this thesis is to integrate CDS into EHR applications of a product line via reusable

clinical decision support (CDS) services. The CDS-Services on the one hand, aim to meet the

needs of physicians at the point of care, and, on the other hand, those of the product line owner

via reusability. Reusability promotes the CDS-Services to product line core assets and provides

for improved TTM, reduction of development costs and maintenance efforts.

To achieve the goals of this thesis, the following questions are posed and addressed:

• What are the information needs of physicians at the point of care?

• What information behaviour do physicians adopt to meet their information needs?

• Which internet-based information retrieval resources provide CDS information and how

can they be used to meet physicians’ information needs.

• What approaches can be adopted for developing CDS? How do these approaches

support flexibility and reusability?

The remaining chapters of this thesis are structured as follows: Chapter 2, specifies the problem

statement and presents requirements that are aimed to be met. Chapter 3 provides relevant

fundamentals, In Chapter 4, physicians’ information needs and their information seeking

behaviour are identified. Furthermore, some CDS-Services are proposed to address physicians’

information needs. Chapter 5 presents and evaluates approaches for developing CDS-Systems.

Upon identifying a suitable architecture, chapter 6 continues to discuss the proposed concept

for system independent CDS-Services. The proposed concept is evaluated in Chapter 7, that

discusses the development of CDS-Services and their integration into a Sample application.

Chapter 8 evaluates the proposed concept based on the thesis requirements and CDS

implementation guidelines from the guidelines project (BVBA 2017b). Related Work is

mentioned in Chapter 9. Chapter 10 concludes this thesis and mentions considerations for future

work.

3

2 Problem statement

The goal of this thesis is to integrate CDS into EHR applications via reusable CDS-Services.

The CDS-Services aim to meet the information needs of physicians (from different medical

specialties) at the point of care, and that of the product line owner. The following fundamental

requirements were identified:

The CDS-Services shall:

1. Be integrated into the clinical workflow, i.e. it shall operate unobtrusively to avoid alert-

fatigue.

2. Provide relevant information.

3. Provide latest information.

4. Pro-actively search and provide decision support without requiring entry of already

existing patient data.

5. Be intuitive and easy to use.

6. Be comprehensive.

7. Have low response times for interactions with any of the provided CDS-Services.

The architecture of the product line shall:

8. Support easy integration of CDS-Services into EHR applications.

9. Enable introducing new CDS-Services, with moderate implementation effort.

10. Enable introducing new information retrieval resources, with moderate implementation

effort.

4

3 Background

3.1 Electronic Health Records

Health care is a collective effort that involves various stakeholders and clinicians from different

domains and organizations. EHRs aim to enhance health care and therefore provide centralized

patient information, facilitating patient-information sharing between health care providers and

organizations, e.g. laboratories, pharmacies etc. (HealthIT.gov 2018).

An EHR is defined as “a digital version of a patient’s paper chart.” (HealthIT.gov 2018) EHRs

“contain a patient’s medical history, diagnoses, medications, treatment plans, immunization

dates, allergies, radiology images, and laboratory and test results” (HealthIT.gov 2018). The

International Organization for Standardization (ISO) defines an EHR as “a repository of

information regarding the health status of a subject of care, in computer processable form,

stored and transmitted securely and accessible by multiple authorized users, having a

standardized or commonly agreed logical information model that is independent of EHR

systems and whose primary purpose is the support of continuing, efficient and quality integrated

health care” (ISO/TR 20514:2005).

This thesis adopts both afore-mentioned definitions of an EHR (digital patient data). The terms

EHR application and EHR system are used synonymously to refer to the software used to

manage EHRs.

Benefits of EHRs, when properly used, include but are not limited to, “improved Patient Care,

Increase Patient Participation, Improved Care Coordination, Improved Diagnostics & Patient

Outcomes, Practice Efficiencies and Cost Savings” (HealthIT.gov 2018). EHRs also promote

the implementation of clinical decision support to assist physicians at the point of care.

3.2 Health Level Seven Reference Information Model

The ISO definition of an EHR emphasizes the need for a standardized or commonly agreed

logical information model. This model serves as a vehicle for information sharing across the

different stakeholders involved in health care.

The HL7 RIM is an ANSI (American National Standard Institute) approved standard that

provides an object model for management and sharing of EHR information (HL7 Standards;

HL7 RIM).

The HL7 RIM is depicted in Figure 43. 6 classes form the core of the HL7 RIM namely:

5

• Entity: represents real world objects that participate in health care e.g. persons,

organizations, devices, materials, places etc.

• Role: represents the function or position assumed by entities as they participate in health

care e.g. doctor, nurse, patient etc.

• Act: represents activities, actions, or processes performed during health care.

• Participation: associates an Act to a Role, e.g. a consultant to a performed operation.

• RoleLink: represents a relationship between two separate roles, e.g. a patient and a

consultant.

• ActRelationship: represents a relationship between two acts e.g. a laboratory test request

and laboratory test result.

Although the use of RIM is advised, developers based on their needs, most likely use simplified

or modified versions in EHR implementations (Greenes 2014a, p. 132). The EHR discussed in

this thesis uses a modified version of the HL7 RIM as well. A level of abstraction is introduced

including 2 classes, namely HL7Relationship (as superclass for all relationship classes) and

HL7Object (as super class for Entity, Role and Act). Figure 42 depicts the information model

used in this thesis. Despite the modifications, the information model remains conform to the

HL7 RIM.

3.3 Clinical Decision Support Systems

EHRs facilitate the use of patient data to assist physicians, by preventing errors during the

administration of health care.

Clinical Decision Support (CDS) is defined as “the use of information and communication

technologies (EHRs inclusive) to bring relevant knowledge to bear on the health care and well-

being of a patient.” (Greenes 2014a, p. 8)

In this thesis, Clinical Decision Support Systems (CDS-Systems) are defined as software

applications that assist physicians at the point of care (decision making time point) by providing

patient-specific recommendations (Greenes 2014a, p. 8; Berner 2016b, p. 1).

A CDS-System provides recommendations to assist physicians in various aspects of health care

that include but are not limited to: diagnosing health conditions, finding best therapies and drug

prescriptions. In this thesis a CDS-System is viewed as an assembly of CDS-Services. CDS-

Services provide recommendations to address health care aspects. A CDS-System is thus said

to provide various CDS-Services e.g. a drug interaction service, drug adverse event service,

clinical trial locator service, medical publication search service etc.

6

Types of CDS-System

There are several schemes for classifying CDS-Systems in Literature. This thesis considers the

following classifications.

Intended user

Though traditionally intended for physicians, there has been a trend in the last decades for CDS-

Systems targeting patients and other stakeholders (Col and Correa-de-Araujo 2014).

Depending on the targeted users (i.e. health care providers or consumers), the type of

information and the mode of interaction with the CDS-System may vary considerably.

This thesis considers CDS for health care providers, particularly physicians.

Purpose

CDS-Systems are also described in terms of pursued goals.

Purpose Key Methodologies

Answering questions Direct hyperlinks from context-specific settings, context-

specific information retrieval, use of agents and information

brokers, infobuttons as instance of the latter, or ultimately, a

“personal guidance system”

Marking decisions Gathering data, analyzing the data, and providing

recommendations for assessments or actions

• Diagnosis

Bayes´ theorem, algorithmic computation, heuristic reasoning,

statistical data mining/pattern recognition methods

• Test selection Decision analysis, logical rules/appropriateness criteria, and

logistic models and belief networks for risk prediction (e.g. for

screening decisions)

• Choice of

treatment

For choosing among alternatives, decision analysis, and logical

rules/appropriateness criteria, including increasingly genotype

considerations. For dose modifications for age or factors such as

renal function, algorithmic computation. For dosimetry or dose

distribution, algorithmic computation based on geometric and

pharmacokinetic models, with use of heuristics and statistical

methods for optimization

• Prognosis Logistic regression, Markov modeling, survival analysis models,

and quality of life assessment scoring methods

Optimizing process flow

and workflow

Multistep algorithms, guidelines, and protocols, coordination of

participants by workflow modeling, scheduling, and

communication methods

Monitoring actions Use of ECA1 rules, with background detection of events, in real-

time or asynchronously, logical evaluation of conditions, and

issuing of messages. Events can be a user activity such as choice

selection or data entry, a result arrival, or the passage of time

Focusing attention and

enhancing visualization

Organization and presentation of items in data entry, display, or

reporting applications. May be done by use of sequences to

encourage intended behaviors, by a process flow model such as

1 Event-condition-action rules

7

an underlying guideline, and/or by visual groupings based on

shared attributes such as purpose, medical subdomain, or

application context. May also include dashboards, trend plots, or

other summarization and visualization methods that make it

easier to identify key elements needed for decision making

Table 1 Principal purposes for CDS, and the key methodologies used (Greenes 2014b)

The CDS-System discussed in this thesis pursues the purposes of answering questions, assist

decision making by providing patient-specific recommendations, assist physicians in the choice

of treatment, and finally monitoring actions.

Time at which CDS is provided

CDS-System implementations also vary based on the time at which they provide decision

support. This could either be “before, during, or after the clinical decision is made” (Berner

2016a, p. 2).

Interactivity

Interactivity deals with whether the CDS-System is actively or passively provided. For

example, a CDS-System can actively provide reminders and alerts that demand action from the

physician or passively wait for the physician to require the information. In this thesis, the

adopted approach is to passively provide CDS. The aim is to avoid acting obtrusively to the

clinical workflow of the physician (see (Berner 2016a, p. 71)).

Degree of integration with EHR

CDS-Systems can either be developed as standalone systems or be integrated into EHR

applications. Both approaches have pros and cons, however, literature reveals that there has

been a movement from standalone system architectures to service oriented architectures (see

(Rodriguez-Loya and Kawamoto 2016)). This thesis adopts a service-oriented architectural

approach for developing CDS-Systems, which is further discussed in Chapter 5.

Knowledge-Based or Nonknowledge-Based

This is an architectural trait of CDS-Systems. A CDS-System might either encompass a

knowledge base or not. A Knowledge base refers to a form of “compiled information that is

often but not always, in the form of if-then rules.” (Berner 2016a, p. 3)

CDS-Systems without a knowledge base mainly rely on artificial intelligence that leverage

machine learning techniques to provide CDS. Such CDS-Systems have not yet been widely

8

adopted due to the lack of transparence in applied reasoning steps (Holst et al. 2000). Physicians

must understand how any given conclusions are met.

The CDS-System discussed in this thesis neither has a local knowledge base nor does it employ

any local machine learning techniques to make recommendations. The CDS-System rather

exploits the availability of web based medical resources. It consumes available REST APIs to

retrieve CDS content and provide recommendations. The CDS-System adopts a service

oriented architectural approach which is further discussed in Chapter 5.

3.4 Software product lines

Product lines are ubiquitous in nowadays industry. For example, automotive and mobile phone

manufacturers increasingly produce similar vehicles and mobile phones.

“A software product line is a set of software-intensive systems sharing a common, managed set

of features that satisfy the specific needs of a particular market segment or mission and that are

developed from a common set of core assets in a prescribed way”. (Clements and Northrop

2009, p. 5)

Core assets provide a common platform for product derivation and instantiation. Core assets

are alternately referred to as, reusable artefacts (see (Pohl et al. 2005, p. 20)). The terms core

assets and reusable artefacts are used synonymously in this thesis.

Core assets include all sorts of software development artefacts e.g. “the architecture, reusable

software components, domain models, requirements statements, documentation and

specifications, performance models, schedules, budgets, (test designs), test plans, test cases,

work plans, and process descriptions.” (Pohl et al. 2005, p. 20; Clements and Northrop 2009,

p. 14)

The benefits of adopting the software product line approach include:

• Production economies i.e. reduction of development costs

• Reduction of time-to-market

• Enhancement of product quality

• Mass customization support, resulting in

• Improved customer satisfaction etc. (Clements and Northrop 2009, pp. 17–27; Pohl et

al. 2005, pp. 9–13)

9

3.4.1 Software product line engineering

Software product line engineering involves the systematic reuse of core assets for derivation of

software products that are tailored to meet customers’ needs. (Pohl et al. 2005, p. 14)

(Clements and Northrop 2009) identify three essential activities for SPLE are presented, namely

Core asset development, Product development and Management activities.

Management activities are further subdivided into technical and organizational management.

Organizational management provides resources to support SPLE e.g. competent personnel and

funding. It also performs activities for Customer-Relationship-Management. Technical

management on the other hand supervises core asset and product development activities.

(Clements and Northrop 2009, p. 45)

Figure 1 Essential Product Line Activities (Clements and Northrop 2009, p. 30)

In this thesis, the SPLE Framework proposed by (Pohl et al. 2005) is used. It separates SPLE

into two separate development processes namely, the Domain and Application engineering

processes (Pohl et al. 2005, p. 20). These processes map the Core Asset and Product

Development process proposed by (Clements and Northrop 2009). The SPLE Framework is

depicted in Figure 2. The SPLE Framework does not specific a sequential order of execution

for the processes and the processes are performed iteratively (Pohl et al. 2005, p. 23). The

subsequent sections discuss the Domain and application engineering processes.

10

Figure 2. The software product line engineering framework (Pohl et al. 2005, p. 22)

3.4.2 Domain engineering

The goal of domain engineering is to develop reusable core assets for product derivation. To

achieve this goal, domain engineering must identify and realize commonality and variability of

the product line. (Pohl et al. 2005, p. 20)

Domain engineering encompasses five sub processes, which are discussed subsequently.

Product Management

Based on the business goals of a company, the product management sub process defines the

scope of the product line a.k.a. the product portfolio. The product management process provides

both a roadmap and a list of existing core assets, that can be systematically reused for product

derivation. (Pohl et al. 2005, p. 25)

Domain Requirements Engineering

This process analysis requirements for of the entire product portfolio. The aim is to identify

common and varying requirements between the products. The output of domain requirement

engineering includes requirements and variability models for the entire product line.

Application specific requirements engineering is still required. (Pohl et al. 2005, pp. 24–25)

11

In SPLE, variability can be defined as the ability of a core asset or any of its properties to change

on purpose. A variation point is a representation of a varying core asset or its varying property.

To identify variation points (Pohl et al. 2005, p. 60) propose posing the following questions,

What does vary? Why does it vary? How does it vary? Applied to core assets the questions are:

• What core assets do vary or what properties of core asset vary?

Leads to precise variation point identification.

• Why does the core asset or its property vary?

This could for example be due to variation in other core assets or varying stakeholder

requirements.

• How does the core asset or its property vary?

Posing this question leads to the identification of the different states, shapes or

conditions a varying core asset can assume. In SPLE, these different assumable states

are termed variants.

In SPLE, the domain engineering process designs and implements variability within core assets

while the application engineering process exploits variability for derivation of concrete

products.

SPLE identifies 4 types of variability namely, variability in time, variability in space, internal

and external variability.

Variability in time is when different version of a core asset or any of its properties are valid at

different times. Variability in time is used to accommodate core asset evolution with minimal

effort and impact for the product line e.g. developers of an operating system define a variation

point called authentication mechanism with a single variant password authentication. The

authentication mechanism variation point later facilitates the introduction of a new variants e.g.

fingerprint authentication.

Variability in space is the availability of a core asset in different version at the same time e.g.

core asset developers simultaneously support password and fingerprint authentication as

operating system authentication mechanisms.

Internal variability is variability that is not visible to customers e.g. developers of operating

system used in health care implement a variation point ‘authentication mechanism’ with two

variants, password- and fingerprint-authentication. If fingerprint authentication is selected, at

12

least one encryption standard must be chosen from 256-bit Advance Encryption Standard and

2048-bit RSA (Rivest-Shamir-Adleman).

External variability is that variability that is visible to the customer e.g. password- or

fingerprint-authentication to an operating system.

Variability documentations ideally provide information about what the varying core asset is,

why it exists, for whom it was intended and how it varies (the supported variants). Documenting

variability is beneficial in that it improves communication, between developers as well as with

customers. The documentation also improves decision making as it includes “rationales for

including a particular variant”. (Pohl et al. 2005, p. 75)

In this thesis, variability is documented using both the orthogonal variability model (OVM), as

proposed by (Pohl et al. 2005), and UML (Unified modeling language) (see Chapter 6, Figure

12). Figure 3 depicts the graphical notation for representing variability using the OVM. Figure

4 shows the authentication mechanism variation point using the OVM and UML.

Figure 3 Graphical notation for variability models (Pohl et al. 2005, p. 85)

13

Figure 4 Authentication mechanism variation point using OVM vs UML

In the case of the UML representation, an interface is chosen as implementation for a variation

point. The variants are classes that realize this interface. There are several techniques for

implementing variability (Gacek and Anastasopoules 2001).

Domain Design

The goal of the domain design process is to define the product line reference architecture, based

on the common and varying requirements from the domain requirements engineering process.

(Pohl et al. 2005, p. 26)

Domain Realization

The domain realization process implements core assets and configuration mechanisms that

accommodate variability of the product line. Domain realization therefore provides the

common platform used for product derivation and instantiation.

Domain Testing

The domain testing process evaluates the reference architecture and developed core assets.

Several strategies can be adapted for domain testing. In this thesis, we use the Sample

Application Strategy (SAS) (Pohl et al. 2005, p. 284). The main advantage of SAS, is that it

provides “an early validation of the software product line” (Pohl et al. 2005, p. 284). SAS

involves the development of a sample application to validate core assets and supported

variability (Pohl et al. 2005, p. 275).

Other domain testing strategies include, the Brute Force Strategy, Pure Application Strategy,

Commonality and Reuse Strategy. For further information see (Pohl et al. 2005, pp. 271–280)

14

3.4.3 Application engineering

Application engineering exploits commonality and variability of the product line for the

derivation of specific products. The aim of application engineering is to maximize the reuse of

developed core assets. Inputs to the application engineering process include but are not limited

to the product lines scope, the product line reference architecture, the variability model and the

production plan. (Clements and Northrop 2009, p. 37)

The sub processes of the application engineering process include Application Requirements

Engineering, Application Design, Application Realization and Application Testing. (Pohl et al.

2005, p. 30)

This thesis focuses on the domain engineering process and therefore does not provide further

detail on the application engineering process.

15

3.5 Cloud computing and Multitenancy

Hosted

applications/apps

Development

tools, database

management

business analytics

Operating

systems

Servers and

storage

Networking

firewalls/security

Data center

physical

plant/building

 Figure 5. What is SaaS (Adapted from (What is SaaS? Software as a Service | Microsoft

Azure))

The provision of computing services over the internet is known as cloud computing. Cloud

providers are companies that deliver computing services e.g. Microsoft, Amazon etc. Figure 5,

depicts the layers of cloud computing namely:

• Infrastructure as a Service (IaaS): This layer involves the use of a datacenter for the

provision of computing via servers (aka. Virtualization), storage and networking

services.

• Platform as a Service (PaaS): This layer involves the delivery of maintenance services

for databases, server software and diverse development tools.

• Software as a Service (SaaS): This layer involves the provision of application hosting

and maintenance (upgrades, security patching) services.

Multitenancy is an architectural approach for providing SaaS. In multitenant applications,

multiple tenants share the same physical instance of an application. Physical instance refers to

shared physical resources like Virtual Machines (VMs) (i.e. CPU, networking) and databases.

A tenant refers to a group of users with common, access and privileges to a software instance.

Due to reuse of physical resources, multitenant architectures enable reduced costs and are as a

result beneficial for service providers. However, multitenancy requires complex application

logic to isolate tenants. (Implementing a multi-tenant offering in Azure using CSP – Microsoft

US Partner Community blog; What is SaaS? Software as a Service | Microsoft Azure; Cloud-

10 Multi Tenancy and Physical Security - OWASP 2018; Multi-tenant SaaS patterns - Azure

SQL Database 2018; Microsoft 2012; Mike Wasson 2018)

Different approaches (also referred to as tenancy models) exist for storing tenant data. In the

single-tenancy model, data is stored in a separate database for each tenant (see Figure 6). In the

16

multi-tenancy model, data from all tenants is stored in the same database (see Figure 7). Hybrid

tenancy models also exist that combine both afore mentioned models.

Figure 6. Multitenant App with database per

tenant

Figure 7. Multitenant App with multi-tenant

database

To assure that tenants are properly isolated, the database in the multitenancy model must be

extended with a column or more for tenant identification. Later versions of the Microsoft SQL

database support tenant isolation in multitenancy models via the row-level security mechanism

(see (Row-Level Security 2018)). The EHR with integrated CDS-System applications,

developed in this work, are offered to customers as SaaS and are hosted either on Microsoft

Azure or on Microsoft Internet Information Services (IIS) servers. This thesis adopts the multi-

tenancy model and ensures tenant data isolation by leveraging the row-level security

mechanism of the Microsoft SQL database. Because of adopting a dynamic SPL approach,

tenants share a single domain instance. Via tenant configurations, reusable software

components are used to specify the tenant context, thus providing a tenant specific view on the

instance. Available software components can be used in more than one tenant contexts.

17

4 CDS Information

This section aims to address questions related to the information needs of physicians at the point

of care, namely:

• What are the information needs of physicians at the point of care?

• What is the information seeking behavior of physicians?

• What web-based medical information retrieval resources are commonly used amongst

physicians?

4.1 Physicians’ information needs

Many studies have been conducted to identify the information needs of physicians at the point

of care (Clarke et al. 2013). Table 2 shows the result of a literature review, conducted to identify

the needs of physicians and nurses at the point of care.

Study Diagnosis Drug Treatment Prognosis Epidemiology Etiology

Allen et al., 2003 x x

Alper et al., 2005 x x x x x

Bergus and Emerson, 2005 x x x

Cao et al., 2010 x x x x x x

Chan and Stieda, 2011 x x

Chen et al., 2006 x

Cheng, 2004 x x x x

Cimino, 2006 x

Cimino, 2007 x x

Cogdill et al., 2000 x x x x

Cucina et al., 2001 x x x

Cullen, 2002 x x

Del Fiol and Haug, 2008 x

Ebell and White, 2003 x x x x

Fozi et al., 2000 x x x x

Gonzalez-Gonzalez et al., 2007 x x x

Gorman et al., 2004 x

Green et al., 2000 x x x x

Lauscher et al., 2008 x

Magrabi et al., 2005 x x x x

Maviglia et al, 2006 x

Schilling et al., 2005 x x x x x

Schwartz et al., 2003 x x x x

Swinglehurst et al., 2001 x x x x

Total (24) 17 15 14 10 8 7

Table 2. List of information needs of physicians and nurses commonly mentioned in the

review of literature (Clarke et al. 2013)

18

(Clarke et al. 2013) assert that physicians’ information needs at the point of care are associated

with diagnosing health conditions, finding best treatment methods (therapies) and drug

prescriptions. Physicians’ needs for prognosis, epidemiology and etiology information serve

the purpose of confirming diagnosis and therapies (Clarke et al. 2013).

This thesis proposes CDS-Services, to meet the information needs of physicians at the point of

care, namely:

CDS-Service Targeted information need

Drug interaction service Drug

Drug adverse event service Drug

Clinical trial service Drug, treatment, prognosis, epidemiology,

Etiology

Evidence-based medical guideline service Treatment

Literature service Drug, treatment, prognosis, epidemiology,

etiology

Table 3 CDS-System information services and addressed information needs

As can be seen in Table 2, none of the proposed CDS-Services assist physicians in diagnosing

patients’ issues. The services are rather for post diagnosis scenarios.

19

4.2 Information retrieval resources for CDS content

As shown in

Table 4, considerate effort has been performed, to identify the information seeking behavior of

clinicians. According to the findings in (Clarke et al. 2013), the most consulted resource is the

internet. Regarding these findings, the question to pose is, what web-based medical information

retrieval resources are commonly used amongst physicians?

In (Maggio et al. 2014), PubMed and UpToDate are identified as belonging to widely used

Web-based information retrieval resources. The work in (Johannes Idelhauser 2016), identified

further web-based information retrieval resources shown in Appendix A,B,C and D.

Study Internet Textbooks Journals Colleague Drug

Compendium

Professional

websites

Medical

Libraries

Adams et al., 2007 x x x

Alghanim, 2011 x x x x

Alper et al., 2005 x x x x

Andrews et al.,
2005

x x x x x

Bennett et al., 2005 x x x x

Bertulis and

Cheeseborough,

2008

x x x

Cimino et al., 2003 x x x x

Cullen et al., 2011 x x x

Cullen, 2002 x x x x

Ebell and White,

2003

x x x x x

Edson et al., 2010 x x x x

Fozi et al., 2000 x x x x

Gonzalez-Gonzalez

et al., 2007

x x x x x

Gorman et al.,

2004

x x x x x x

Green et al., 2000 x x x

McKibbon and

Fridsma, 2006

x

Norbert and

Lwoga, 2012

 x x x x x

Perley et al., 2007 x

Randell et al., 2009 x x

Schilling et al.,

2005

x x x x x x

Schwartz et al.,

2003

x

Turner et al., 2008 x x

Total (22) 18 17 15 13 6 6 4

Table 4. List of information sources utilized by physician and nurses (Clarke et al. 2013)

In this thesis, information retrieval resources are selected based on the following criteria:

• availability of an API

• freely accessible without registration and

20

• volume of information

Table 5 shows the list of selected information retrieval resources used in this thesis.

CDS-Service Information retrieval resource Updates

Drug interaction service RxNav Drug Interaction API (Sources:

DrugBank and ONCHigh)

Monthly

Drug adverse event service OpenFDA Drug adverse event API Quarterly

Clinical trial service ClinicalTrials.gov Daily

Evidence-based medical guideline

service

National Comprehensive Cancer

Network (NCCN) Guidelines

Updated at

NCCN's

discretion

Literature service PubMed Daily

Table 5 CDS-Services, selected information retrieval resources

21

5 Architectures for Clinical Decision Support

Systems

This chapter aims to address the following questions:

• What architectural approaches exist for implementing CDS-Systems?

• Which architectural approaches support modularity, flexibility and reusability of CDS-

Systems?

To answer these questions, a literature review was performed to identify relevant literature.

Found publications include (Kawamoto et al. 2010; Loya et al. 2014; Wright and Sittig 2008;

Greenes 2014a; Kawamoto et al. 2014; Rodriguez-Loya and Kawamoto 2016; Greenes 2014b).

5.1 Evolution of CDS architectures

Many approaches have been adopted for building CDS-Systems. All identified studies agree on

the fact that, there has been an evolution from tightly coupled monolithic CDS-System

architectures to loosely coupled service-oriented architectures.

Beginning from the year 2005, (Wright and Sittig 2008) identify four evolutionary approaches

for CDS-Systems. Figure 8 shows the different approaches and systems developed based on

these approaches. Advantages and disadvantages for each approach are discussed subsequently.

Figure 8 A schematic drawing of the four-phase model for clinical decision support (Wright

and Sittig 2008)

22

5.1.1 Stand-alone CDS-Systems

Stand-alone CDS-Systems function independently of the EHR.

Advantages Disadvantages

The effort required for developing stand-

alone systems is manageable, given the

existence of domain knowledge and software

engineering skills.

These systems require double entry of patient

data, first into the EHR, then into the CDS-

System. This is both error prone and time

consuming.

This approach does not require the

specification of standards.

Stand-alone systems cannot provide clinical

decision proactively.

Stand-alone systems are easy to deploy and

share.

Table 6 Advantages and disadvantages of Stand-alone CDS-Systems (Wright and Sittig 2008)

5.1.2 Integrated CDS-Systems

These systems integrate CDS into EHRs, however, via tightly coupled implementations.

Advantages Disadvantages

Integrated CDS-System do not require data

entry and therefore solve the problems faced

with stand-alone systems.

Sharing CDS content across organizations

requires that the involved parties use the

same EHRs.

Integrated systems enable proactive decision

support.

Integrated systems encourage mixing EHR

code with CDS code. In cases where code for

both systems is mixed, maintaining and

updating existing code requires much effort.

 Marketing integrated systems is difficult due

to clinicians’ reluctance to replace existing

systems. Medical institutes will rather tend to

extend existing systems to provide CDS. A

common approach is to use info buttons (see

(Del Fiol et al. 2014)).

Table 7 Advantages and disadvantages of tightly coupled integrated CDS-Systems (Wright

and Sittig 2008)

5.1.3 Standards-based CDS-Systems

This approach leverages standard specifications for encoding, representing, storing and sharing

CDS content.

Advantages Disadvantages

Enable the sharing of CDS content across

organizations.

The existence of manifold standards impedes

CDS content sharing, since this requires the

implementation of mapping mechanisms.

Enforce separation of EHR application code

from CDS-System code. This enhances code

maintainability.

Concepts without the scope of a given

standard are not supported. Standards

therefore limit users to standard scoped

concepts, e.g. the Arden Syntax only

supports CDS in the form of event-driven

based alerts and reminders.

Table 8 Advantages and disadvantages of standards-based CDS-Systems (Wright and Sittig

2008)

23

5.1.4 Service oriented CDS-Systems

These CDS-Systems adopt loosely coupled software design principles, such as SOA. SOA

organizes complex system functionalities into smaller, reusable modules called services, that

are accessible via standardized Application Programming Interfaces (APIs) (Advancing Open

Standards for the Information Society (OASIS). 2006), (Kawamoto et al. 2014). Benefits of

SOA include flexibility, modularity, reusability (also of legacy applications), maintainability,

and interoperability (SOA Features and Benefits; Rodriguez-Loya and Kawamoto 2016). SOA

also promises reduction in implementation time and costs, then services are developed mainly

by integration of well-defined services (Welch et al. 2014b). Using SOA, a CDS-System can

be implemented by composing various CDS-Services that provide desired information and

functionality. Furthermore, SOA-based CDS-System approaches enable distributed (across

different vendors) development of CDS functionalities, enforce separation of concerns and

accommodate centralized CDS knowledge management and sharing (Kawamoto et al. 2010).

The SOA-based approach best suits the requirements for rapid implementation, flexibility,

modularity, maintainability, evolvability and portability of the CDS-Services, and is therefore

chosen as architectural approach for this thesis. Studies, also reveal a wide adoption of the SOA-

based approach for CDS (Loya et al. 2014).

Figure 9 Sample CDS system architecture (Adapted from (Rodriguez-Loya and Kawamoto

2016))

Figure 9 depicts a sample of a SOA-based CDS-System architecture. This shows how a

complex EHR system can be realized using various services, namely, a Data Access service for

retrieving patient specific data, a Terminology Service and a CDS-Service. The CDS-Service

24

in this sample system runs as a web service and is accessible via an API. The CDS web service

might also use other web-based CDS-Services.

5.2 CDS-System design components

As aforementioned, the goal of this thesis is to build CDS-Services that enable easy integration

of CDS into EHR applications. This section discusses the architectural components of EHR

applications with integrated CDS.

Generally, the architecture of EHR applications with integrated CDS is constituted of 5

components as shown in Figure 10, namely:

1. The Execution engine: Processes input e.g. patient data (in form of prescribed

medications, diagnosed diseases and patient history), to produce recommendations.

2. The Knowledge base: Holds information used by the execution engine for reasoning.

This component is optional as CDS-System may be implemented such that they use

external knowledge bases.

3. Information model: Holds data format specifications for expected input.

4. Result specification: Returns computed results to the invoking application.

5. Application environment: Invokes the CDS-System and manages user interaction with

the CDS-System. For EHRs integrating a CDS-System it is common that the application

environment retrieves and forwards patient data when invoking the CDS-System.

(Greenes 2014b; Kawamoto et al. 2014)

Figure 10 A conceptual model of CDS design components and their interactions with the host

application environment. (Greenes 2014b)

25

As shown in Figure 10, the process of retrieving CDS information, is initiated by an invoking

process within the application environment. In most cases, the invoking process passes patient-

specific data to the Execution engine of the CDS module (CDS-System). The Execution engine

understands the input, thanks to the data format specifications in the Information model

component. Using knowledge from the Knowledge Base component, the execution engine

computes the received input and generates an output, that is forwarded to the Invoking

application process via the Result specification component. (Greenes 2014b)

Developing an integrated CDS-System can thus be achieved by systematic composition of the

above-mentioned components.

In summary, flexibility, modularity and portability of CDS-Systems can be achieved by:

• Cleanly separating the CDS-System from the invoking EHR application and

communicating with it via APIs. (Greenes 2014b)

• Separating the code of the execution engine from the code of the EHR application and

from other parts of the CDS-System as well. This enables separate development,

maintaining and enhancing of the execution engine. Secondly, “this provides flexibility

and portability, in that, the execution engine can be recoded and reimplemented in

different platforms independent of other CDS parts, and can even be embodied in

external services […].” (Greenes 2014b)

• Using a standardized information model e.g. the HL7 RIM. This enables the CDS-

Service to be used in a variety of settings, “[...] e.g. interactively with a user as well as

in background mode, retrieving data from the EHR, and in more than one platform and

system environment.” (Greenes 2014b)

• Separating the result specification component from the rest of the CDS-System. This

provides for flexibility in the mode of interaction with the CDS-System, therefore

facilitating portability of the CDS-System. The result of the CDS-System could for

example “be provided in real-time in interactive applications, in the background in

alert/reminder usages or in batch mode in the production of reports or summaries.”

(Greenes 2014b)

26

6 SOA-based CDS-Services

The aim of this thesis is to integrate CDS into EHR applications of a product line via CDS-

Services. The CDS-Services must therefore be reusable, a quality that promotes them to core

assets of the product line. The terms CDS-Services and CDS core assets are therefore used

synonymously (see Figure 12). To achieve reusability, the CDS-Services must be portable and

independent of the EHR application into which they are integrated.

Figure 11 CDS-Services in a SOA-based Health information systems environment

Figure 11 depicts the proposed concept. The concept adopts a SOA based approach to provide

CDS Services to several EHR applications (EHR1 and EHR2) but also to other health

information systems e.g. a CPOE. The functionalities of the CDS services are exposed via APIs.

The same is true for the functionalities of the Data Access and Terminology Services, that

provide access to patient data and medical vocabulary respectively. The CDS services may

either provide locally implemented CDS functionalities or access external medical information

retrieval resources (CDS Web Services) via their APIs.

EHR1

EHR2

CPOE

Data Access Service

Terminology Service

CDS Services
Drug interaction

Drug adverse event
Clinical trial search

EBM Guideline
Literature

...

CDS Web Services
RxNav

DailyMed
OpenFDA
PubMed

ScienceDirect
ClinicalTrials.gov
NCCN Guidelines

...

use

use

use

27

Figure 12 CDS-Services architecture

Figure 12 shows the architecture for the CDS-Services. Each CDS-Service contains an interface

that serves as a variation point to facilitate the introduction of new CDS Web Services. Variants

are classes that realize the interface and implement RESTful client logic for retrieving CDS

information from selected CDS Web Services.

To introduce a new information retrieval resource (variant) for any CDS-Service, the CDS-

Services developer:

• creates a class that implements the selected service interface

• programs RESTful client logic to query and retrieve CDS information from a selected

CDS web service

To introduce a new CDS-Service, the CDS-Service developer:

• creates an interface and defines the methods that must be implemented by variants

• follows the afore mentioned steps for introducing a new information retrieval resource

An important issue to be addressed when using interfaces, is how to eliminate code duplication

since each variant must implement all methods defined in the interface. To address this issue,

the CDS-Service developer shall implement utility classes with static methods.

The CDS-Services are therefore loosely coupled to the EHR application into which they are

integrated, resulting in flexibility and portability. The CDS-Services have different patient-data

28

demands for retrieving CDS recommendations. The interfaces therefore vary accordingly.

Table 9 shows the interfaces and their specifications2.

CDS-Service interface CDS-Service Methods

IClinicalTrialService Uri GetClinicalTrialQueryLink (ClinicalTrialQuery query);

IDrugAdverseEventsService ICollection<DrugAdverseEvents> FindDrugAdverseEvents

(IList<string>patientMedications, int limit)

IDrugInteractionService IList<DrugInteraction> FindDrugInteractions

(IList<string> medications);

IEBMGuidelineService EBMGuideline SearchGuidelines

(string issueName, ClinicalStage? clinicalStage, string

medicalTerms);

ILiteratureService IList<string> SearchForLiteratureIds (IList<SearchField> ehrFields,

int maxResultSize);

IList<Literature> GetLiteratureByIds (IEnumerable<string>

publicationIds);

ITerminologyService IList<Term> Autosuggest (TerminologyAutosuggestData

autosuggestData);

Table 9 CDS-Services interface specifications

To use these services, the application developer shall first retrieve data from the EHR and call

the API methods passing patient-specific data in the awaited formats (see Listing 1).

private static IDrugInteractionService rxnormDIService = new
RxNormDrugInteractionService();

//Retrieve patient medications from EHR store

return rxnormDIService.FindDrugInteractions(patientMedications);

Listing 1 Using the drug interaction service

The following chapters discuss the CDS-Services in detail.

6.1 Drug interaction service

The aim of this service is to provide drug-drug interaction information to physicians at the point

of care. For this purpose, the drug interaction service requires a list of the patient’s medications,

prescribed as well as not yet prescribed. The not yet prescribed drugs are important for checking

drug interactions between already prescribed and not yet prescribed drugs. The indication of

such interactions calls for action from the physician. Listing 2 shows the IDrugInteraction

interface, while Listing 3 depicts the response data format, namely, DrugInteraction. The flow

of logic for the drug interaction service is depicted using a sequence diagram in Figure 40 of

Appendix E.

2 The programming language used for the Listings is C#.

29

public interface IDrugInteractionService
 {
 IList<DrugInteraction> FindDrugInteractions(IList<string> medications);
 }

Listing 2 Drug interaction service interface - IDrugInteractionService

public class DrugInteraction
 {
 public string Description { get; set; }

 public string Severity { get; set; }

 public List<string> InteractingMedications { get; set; }

 public string Comment { get; set; }
 }

Listing 3 Drug interaction service interface response data format – DrugInteraction

6.2 Drug adverse events service

The aim of this service is to retrieve information of drug related adverse events for the patient’s

prescribed and not yet prescribed drugs. The service interface specification is shown in Listing

4. Listing 5 and Listing 6, show the specification of the service’s response data format. Figure

41 of Appendix F depicts the flow of logic for this service.

public interface IDrugAdverseEventsService
 {
 ICollection<DrugAdverseEvents> FindDrugAdverseEvents(IList<string>
 patientMedications, int limit = 1);

 DrugAdverseEvents FindDrugAdverseEvents(string medication, int limit = 1);
 }

Listing 4 Drug adverse events service interface – IDrugAdverseEventsService

public class DrugAdverseEvents
 {
 public string Medication { get; set; }
 public ICollection<AdverseEvent> AdverseEvents { get; set; }
 }

Listing 5 Drug adverse events service response data format - DrugAdverseEvents

30

public class AdverseEvent
 {
 /// <summary>
 /// Name of the reported adverse event
 /// </summary>
 public string Term { get; set; }
 /// <summary>
 /// Number of reports
 /// </summary>
 public int Count { get; set; }
 }

Listing 6 Drug adverse events service response data format – AdverseEvent

6.3 Clinical trial service

The aim of the clinical trial service is to provide information on clinical trials that may be worth

considering for the patient. Listing 7 shows the interface specification of the clinical trial

service.

public interface IClinicalTrialService
 {
 Uri GetClinicalTrialQueryLink(ClinicalTrialQuery query);
 }

Listing 7 Clinical trial service interface - IClinicalTrialService

public class ClinicalTrialQuery
 {
 public string Condition { get; set; }
 public string Term { get; set; }
 public string Country { get; set; }
 public string State { get; set; }
 public string City { get; set; }
 public int Distance { get; set; }
 public int? Age { get; set; }
 public Gender? Gender { get; set; }
 public DateTime StudyStartFrom { get; set; }
 public DateTime StudyStartTo { get; set; }
 }

Listing 8 Clinical trial service parameter data format – ClinicalTrialQuery

Listing 8 shows the specification of the ClinicalTrialQuery parameter, that holds patient-

specific data from the EHR and Listing 9 shows the specification of the Gender data type.

31

public enum Gender
 {

 [Description("Female")]
 FEMALE,

 [Description("Male")]
 MALE,

 [Description("Other")]
 OTHER,

 [Description("All")]
 ALL,
 }

Listing 9 Specification of the gender data type

6.4 Literature service

The aim of this service is to retrieve relevant (patient-specific) medical publications. Listing 10

shows the Literature service interface. The query parameter is a list of SearchField objects. As

shown in Listing 11 and Listing 12, this object provides an EHR field mapping (in the format,

field name : field value). The return data type is shown in Listing 13.

public interface ILiteratureService
 {
 IList<string> SearchForLiteratureIds(IList<SearchField> ehrFields,
 int limit);
 IList <Literature> GetLiteratureByIds(IEnumerable<string> publicationIds);
 }

Listing 10 Literature service interface – ILiteratureService

 [Serializable]
 public class SearchField
 {
 private string _value;

 public SearchField(EhrField fieldName, string value)
 {
 FieldName = fieldName;
 Value = value;
 }

 public EhrField FieldName { get; set; }

 public string Value
 {
 get { return _value; }
 set { _value = value.ToLower(); }
 }
 }

Listing 11 EHR mapping for literature service – SearchField

32

 public enum EhrField
 {
 Age,
 BiopsyType,
 ClinicalStage,
 Comorbitity,
 Gender,
 PositiveGene,
 NegativeGene,
 IssueType,
 LesionSite,
 LesionType,
 Medication,
 Other,
 Procedures,
 Tstage,
 Ulceration
 }

Listing 12 EhrField data type for EHR mapping in literature service

public class Literature : IEquatable<Literature>
 {
 [JsonProperty("id")]
 public string DocumentId { get; set; }

 [JsonProperty ("title")]
 public string ArticleTitle { get; set; }

 [JsonIgnore]
 public string AbstractText { get; set; }

 [JsonProperty ("conclusion")]
 public string AbstractConclusion { get; set; }

 public IList<string> PublicationType { get; set; } = new List<string>();

 [JsonIgnore]
 public string PublicationYear { get; set; }

 [JsonIgnore]
 public string PublicationMonth { get; set; }

 [JsonIgnore]
 public string JournalTitleAbbreviation { get; set; }

 [JsonIgnore]
 public string JournalVolume { get; set; }

 [JsonIgnore]
 public string JournalIssue { get; set; }

 public string JournalString { get; set; }

 [JsonIgnore]
 public IList<string> MeshTerms { get; set; } = new List<string>();

 public bool IsReview { get; set; } = false;
 public bool IsClinicalTrial { get; set; } = false;
 public bool IsCaseReport { get; set; } = false;
 }

Listing 13 Literature service response data format - Literature

33

The simplified flow of logic for this service is as follows: The EHR application developer, calls

the SearchForLiteratureIds method passing patient-specific data to the service. The service

queries a selected service e.g. PubMed and retrieves the identifiers (Ids) of fitting medical

publications. The application developer then calls the GetLiteratureByIds method to retrieve

medical publications by their Ids and returns these in the format of a Literature object to the

EHR application developer (see Listing 13). For more information on the literature service see

(Ulrich Beez 2015; Johannes Idelhauser 2016).

6.5 Terminology service

The terminology service is used for automatically suggesting a list of medical terms that match

the user’s input in selected (by EHR application developers) free text fields. Terms are retrieved

from a term store implemented in the scope of the SAGE-CARE project using a Solr3 Apache

Server. Terms are classified into 6 semantic categories, namely, Activity, Anatomy, Disease,

Gene, Medication and Symptom.

 public interface ITerminologyService
 {
 IList<Term> Autosuggest(TerminologyAutoSuggestData autosuggestData);
 }

Listing 14 Terminology service interface - ITerminologyService

3 Apache Solr is an open source enterprise search server based on the Apache Lucene Java search library, with

XML/HTTP and JSON APIs, hit highlighting, faceted search, caching, replication, and a web administration

interface. See http://lucene.apache.org/solr for more information.
3 MS Services are synonymous to EHR Services.

34

public class Term : IEquatable<Term>
 {
 public string SourceId { get; set; }
 public string TermId { get; set; }
 public string Label { get; set; }

 [JsonConverter(typeof(StringEnumConverter))]
 public TermCategory Category { get; set; }

 [JsonConverter(typeof(StringEnumConverter))]
 public TermSource Source { get; set; }

 public string Definition { get; set; }

 public IList<string> Broader { get; set; }

 public ISet<string> Synonyms { get; set; }

 [NotMapped]
 public double Score { get; set; }

 public double Rating(){…}
 …

 }

Listing 15 Terminology service response data format -Term

Listing 14 shows the ITerminology interface. The Autosuggest method requires a

TerminologyAutosuggestData object that contains the term to be autocompleted and some other

information shown and described in Listing 16. The Service returns a List of Term objects (see

Listing 15). Listing 16 shows the specification of the TerminologyAutosuggestData class, used

for querying the Terminology service.

35

 public class TerminologyAutosuggestData
 {
 /// <summary>
 /// Text input to be autocompleted
 /// </summary>
 public string Text { get; set; }

 /// <summary>
 /// Number of Terms to be returned
 /// </summary>
 public int Count { get; set; }

 /// <summary>
 /// String conforming to enum TerminologyService.OrderingType:
 /// - "ByScoreOnly": terms ordered according to term relevance only
 /// - "CategoryClusters": terms ordered according to cluster relevance only
 /// - "CategoryDiversity" (default): combines term and cluster relevance
 /// </summary>
 public string OrderingType { get; set; }

 /// <summary>
 /// There are 6 semantic categories of terms:
 /// symptom, disease, anatomy, gene, medication, and activity
 /// In an autosuggest request, retrieves terms of 1/more semantic categories.
 /// To exclude a semantic category from a query, set its weight to 0
 /// If a semantic category is to be considered its weight must be > 0, e.g. 1
 /// Priorities can be indicated using differing weights. E.g., for twice more
 /// medications than diseases, set MedicationWeight=2 and DiseaseWeight=1
 /// </summary>
 public float MedicationWeight { get; set; }
 public float ActivityWeight { get; set; }
 public float DiseaseWeight { get; set; }
 public float GeneWeight { get; set; }
 public float SymptomWeight { get; set; }
 public float AnatomyWeight { get; set; }
 }

Listing 16 Terminology service parameter data format

(Beez et al. 2015; Ulrich Beez 2015) discuss the Literature service in more detail.

The following chapters discuss the prototyping of the proposed concept using the SAGE-CARE

product line of EHR applications as use case.

36

7 The SAGE-CARE product line use case

In the scope of previous work at the SAGE-CARE project, core assets have been developed

that enable the derivation of EHR applications targeting different medical specialties (Patrick

Spitzer 2016). This thesis aims to integrate CDS into EHR applications of the SAGE-CARE

product line using the CDS-Services discussed in Chapter 6. The following section discuss the

different domain engineering subprocesses for generating core assets of the product line. Core

assets are those artefacts that are systematically reused to build concrete products, in this case

EHR applications with integrated CDS-Services. The following chapters also discuss the

commonalities and variabilities of the CDS-Services.

7.1 Product Management

Based on the business goals of a company, product management defines the products within

the scope of the product line (Pohl et al. 2005). The defined goal is to integrate CDS into EHR

applications of the SAGE-CARE product line via CDS-Services. The output of the product

management sub process is a product roadmap and a list of previous products that may offer

reusable assets for the development of new products. For this thesis, the product list consists of

the Simplicity-MDT EHR application from NSilico Lifescience Ltd. (NSilico), the Melanoma

EHR application and other EHR core assets developed at the UASD.

7.2 Domain requirements engineering

Software Product Line Engineering involves the building of software intensive systems from a

common set of core assets. The core assets can be combined in different ways, so the derived

products meet the needs of individual customers. This section aims at addressing how derived

CDS-Systems shall support customization, to meet the needs of different physicians.

7.2.1 Commonality analysis

This section textually documents the requirements (features) that are common to all derived

CDS-Systems.

Intended user

Dependent of the intended user’s role (e.g. physician, nurse, pharmacist, radiologists, laboratory

technicians, patients etc.), the approach for providing CDS and the type of information provided

may vary. The CDS-Systems are intended for physicians.

37

Purpose and key methodologies

All derived CDS-Systems shall pursue the purposes of answering physicians’ questions,

optimizing clinical process workflow and monitoring of actions at the point of care. Table 10,

describes these purposes in detail.

Purpose Description Key methodologies

Answering

questions

The CDS-System shall use “information

brokers” to map all retrieved settings-,

context- and patient-specific information

from the user’s query to formats

understood by external search tools and

knowledge bases. The response from the

external sources are mapped to formats

understood by the application and then

used to answer the user’s questions.

To fulfill this purpose, the

CDS-System will use Direct

hyperlinks and info buttons

(see (Del Fiol et al. 2014)).

Optimizing

process flow

and workflow

The CDS-System shall use guidelines to

guide the user’s decisions and therapy

pathway.

NCCN Guidelines

Monitoring of

actions –

guarding

against errors

The CDS-System shall monitor changes

performed by the user during patient-care

to guard against errors.

Generate warnings and alerts

upon detection of events and

undesired conditions. These

alerts are displayed in the GUI

in a way that is unobtrusive to

the user’s workflow, to avoid

alert fatigue.

Table 10 Principal purposes for CDS, and the key methodologies used (Greenes 2014a)

Integration with the EHR and patient specificity

All derived CDS-System shall be integrated into EHR applications.

RESTful API for CDS-System functionality

The functionality of all derived CDS-Systems shall be exposed to the EHR applications via

RESTful APIs.

Access management

Access to the CDS-Systems’ APIs shall be managed, by leveraging authorization and

authentication mechanisms. This is important since the CDS-Systems may access patient data,

to provide recommendations.

External CDS content

The CDS-Systems do not include a local knowledge-base. Consequently, the CDS-Systems

shall use external information retrieval resources for providing CDS. The CDS-Systems can

however be extended to include a knowledge base.

38

Information model

The CDS-Systems provide an API that is independent of the information model used by

invoking EHR applications. While this supports the portability of the CDS-Systems, it requires

that application developers get acquainted to the CDS-System API.

7.2.2 Variability analysis

This section discusses how derived CDS-Systems may vary from each other, in other words

how the product line shall support customization of the CDS-Systems. Variants annotated as

“…” in the following symbolize support for extension.

VP1: EHR application services

As depicted in Figure 13, the integration of the CDS-Systems into the EHR shall be optional

except for the Terminology Service which is used in selected free text fields of the EHR

application.

Figure 13. OVM enabled application services

VP2: Locus of control for information retrieval

Information for CDS is either retrieved proactively by the EHR application or on user demand.

For example, the EHR application (i.e. the machine according to the terminology in the previous

sentence) could be configured to invoke the CDS-System and retrieve desired information

immediately after the user opens a patient’s EHR. In this case, the CDS-System is perceived by

the user to run in the background and offer recommendations proactively. Another approach

could be to retrieve CDS information only after the user clicks an info button within the

displayed EHR of a selected patient. This variation is to be implemented in client applications.

The CDS-System backend shall support both approaches.

39

Figure 14 OVM perceived locus of control

VP3: Supported medical specialties

The CDS-System shall provide decision support for several medical specialties. Figure 15

depicts the resulting variation point.

Figure 15 OVM supported medical specialties

VP4: Enabled CDS-Services

The CDS-System shall provide CDS-Services for meeting the needs of physicians at the point

of care. These include;

• Terminology service

• Drug interaction service

• Drug adverse events service

• Clinical trial service

• Evidence-based medical guideline service and a

• Literature (Medical publication) service

Derived CDS-Systems shall always provide a Terminology service and any combination of the

above-mentioned medical information services. Figure 16, depicts the resulting variation point.

40

Figure 16 OVM enabled CDS-Services

VP6: Displayed order of medical information services

The order in which the medical information services are displayed in EHR application GUIs,

may vary depending on physicians’ requirements.

VP7: Information sources for medical information services

Information retrieval resources, may vary for any supported medical information services e.g.

clinical trials could be retrieved from (WHO) or (ClinicalTrials.gov) and drug interaction could

be retrieved from DrugBank (Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M,

Stothard P, Chang Z, Woolsey J.), ONCHigh (Phansalkar et al. 2012). Figure 17 depicts

variability in the information sources for the drug interaction information service. At least one

information retrieval resource shall be selected per enabled CDS.

Figure 17 OVM drug interaction information sources

41

7.3 Domain design

Figure 18 SAGE-CARE SPL Reference Architecture with CDS-Services

The goal of the domain design process is to develop the reference architecture for the product

line based on identified common and variable requirements (see Chapter 7.2). This chapter

42

discusses the proposed reference architecture for the product line and presents reusable core

assets that will support the realization of EHR applications with integrated CDS-Systems.

As depicted in Figure 18, the proposed reference architecture is organized into three Layers,

namely the Presentation, Application and Data Layers. Layering provides for loose coupling,

separation of concerns and accommodates changes to the architecture while assuring

compatibility for existing products (Pohl et al. 2005). Packages highlighted in green contain

CDS functionality. In the following, the layers are discussed in detail. The common, MS

(Medical Specialty), CDS and TS (Technical Services) folders, are used in all layers to separate

corresponding logic and enhance code maintainability.

• Common: Contains shared artefacts (i.e. components, services, classes, views etc.)

• MS: Contains artefacts implementing EHR functionalities or views

• CDS: Contains artefacts for providing CDS

• TS: Contains logic for technical services e.g. google places API, security (access

management).

The Data Layer consists of two stores. The EHR Store for storing patient data, is implemented

using a Microsoft SQL Database. Microsoft SQL Server Express 2016 or higher is required for

leveraging row level security, as a multi-tenancy data storage model is adopted (see Figure 7),

requiring tenant data isolation. The Term store is implemented using an Apache Solr server in

version 5.1.0 (see Chapter 6.5). The term store is used to provide the terminology service, that

is part of the CDS-Services discussed in Chapter 6.

The application layer implements the business logic of the product line applications in C#. The

business logic is organized into services (small, simple, and reusable modules), resulting from

the adoption of a SOA-based approach, as mentioned in Chapter 3.5. The Services package in

the application layer contains technical services (TS), medical specialty (MS) services4 and the

CDS-Services discussed in Chapter 6 (see Figure 12). The Data package implements logic for

accessing the EHR Store and uses Entity Framework as object-relational mapper (ORM). It is

comprised of Data Access Objects that perform CRUD (Create, Red, Update, Delete)

operations on the patient data in the EHR Store. Database configuration logic is implemented

in the Context package e.g. logic for configuring row level security. The Resources package

contains non-code files e.g. an excel spreadsheet used for code generation.

4 MS Services are synonymous to EHR Services.

43

The RESTful Web API, facades the Application Layer. It provides APIs through which client

applications access the services provided by the application layer (EHR and CDS-Services). the

RESTful Web-API is implemented in C# using the ASP.NET Web-API framework.

The presentation layer is comprised of EHR and CDS view components that provide Graphical

User Interfaces for user interaction. View components display data retrieved from the backend

via services that implement RESTful client logic. Presentation layer applications (a.k.a. client

applications) are accessed through a web browser, in the case of this thesis Mozilla Firefox.

The presentation layer is implemented using HTML, CSS, Typescript, AngularJS, Bootstrap,

AngularJS Material and jQuery.

The Setup package hosts logic for seeding the database with patient, tenant, administrator and

user data. This is used for demonstration purposes.

The Code Generator contains logic for generating the Information Model using the afore-

mentioned excel spreadsheet. SPLTests consists of unit tests for SPL core assets.

The domain design process must consider the results of the variability analysis and ensure that

the reference architecture accommodates identified variabilities (Pohl et al. 2005, p. 221). The

focus of this thesis being the CDS-Services, we in the following discuss identified CDS-related

variation points, that must be implemented in the domain realization sub process.

Variability in the application layer

The CDS-Services discussed in Chapter 6, are integrated into the Services/CDS package of the

application layer as shown in Figure 18.

Using the integrated CDS-Services, application developers shall be able provide any of the

following CDS-Services:

• Drug interaction

• Drug adverse events

• Clinical trial

• Literature

• Terminology: mandatory, used for autosuggestion in free text fields of EHR

applications.

• Evidence-based medical guideline (new and SAGE-CARE specific)

This variation point is depicted in Figure 16. For each CDS-Service, application developers

shall be able to select an information source. In this thesis, only the drug interaction service

44

provides more than one information source, namely, ONCHigh and DrugBank (see Figure 17).

Finally, providing CDS in any developed application shall be optional (see Figure 13).

Variability in the Restful Web API layer

Application developers shall implement controllers for calling enabled CDS-Services within

the application layer.

Variability in the Presentation layer

Domain design shall implement view components and services (client logic to access backend

APIs) for all supported CDS-Services. The application developer shall select view components

and services corresponding to the enabled CDS-Services in the application and RESTful Web

API layers. The cdsServices component (in Figure 19) shall serve as orchestrating component

for configuring supported CDS-Service (see Figure 19).

Figure 19 CDS core assets in SAGE-CARE Presentation Layer

45

7.4 Domain realization

The domain design process focuses on the design and implementation of core assets

(components, interfaces etc.), based on the input from the domain design process i.e. the

reference architecture and the selection of reusable software artefacts. The output of domain

design includes, reusable components, interfaces and details on configuration support.

The outer packages of the SAGE-CARE SPL architecture (in Figure 18) are implemented as

separate projects. Figure 20 shows the resulting projects.

Figure 20 SAGE-CARE SPL projects

Inner packages of the SAGE-CARE SPL architecture are organized into folders within their

corresponding projects. All projects except the SAGE-CARE_Client project are implemented

in C#.

The following sections discuss the developed core assets and configuration support for the

SAGE-CARE_Core, SAGE-CARE _Client and SAGE-CARE_RESTful_WebAPI projects.

46

7.4.1 SAGE-CARE_Core project

Figure 21 CDS Core Assets in SAGE-CARE_Core project

Figure 21 shows an overview of available CDS core assets in the SAGE-CARE_CORE project.

Generally, each CDS-Service has a folder in Services/CDS/Common. The CDS-Service folders

contain an Interface e.g. IDrugInteractionService.cs, and an implementation of the interface.

47

The implementation class is named according to the medical information retrieval resource

from which CDS information is retrieved, e.g. RXNormDrugInteractionService.cs. The Utils

folders contain utility classes (e.g. RxNormUtils.cs) that contain reusable code, to avoid code

duplication in interface implementation classes.

To use a CDS-Service, application developers shall instantiate a selected implementation class

and call the desired method as shown in Listing 17.

IDrugInteractionService rxnormDIService = new RxNormDrugInteractionService();

rxnromDIservice.FindDrugInteractions(medications);

Listing 17 Using the drug interaction service

Table 11 provides an overview of available interfaces and their implementing classes.

Interface Implementation

IClinicalTrialService ClinicalTrialGovService

IDrugAdverseEventsService FDADrugAdverseEventsService

IDrugInteractionService RxNormDrugInteractionService

IEBMGuidelineService NCCNEBMGuidelineService

ILiteratureService PubMedLiteratureService

ILiteratureService PubMedLiteratureService

ITerminologyService TerminologyService

Table 11 Overview of available interface implementations for CDS-Services

7.4.2 SAGE-CARE_RESTful_WebAPI

No core assets are available in this project. However, application developers shall implement

application specific controllers in the Controllers/CDS/APPNAME folder. The endpoints for

implemented APIs shall be added to the app/services/common/uriService/uriService.ts file.

7.4.3 SAGE-CARE_Client project

The client project is implemented using HTML, AngularJS, Typescript, CSS, Bootstrap,

Angular Material.

48

Figure 22 CDS Core Assets in SAGE-CARE_Client project

Figure 22 shows CDS core assets within the SAGE-CARE_Client project. The folder structure

reflects the package ordering in Figure 18. Each CDS-Service has a component, controller,

HTML template (view) and a service in app/services/cds/common. AngularJS data binding is

used to synchronize the model (controller) and the view. All CDS-Services share a common

flow of logic. Let’s for example consider the drug interaction service. To retrieve data from the

backend, the DrugInteractionController calls the DrugInteractionService. The

DrugInteractionService retrieves the URL of the DrugInteraction API from the uriService. The

DrugInteractionService then calls the DrugInteraction API within the RESTful_WebAPI

project to retrieve drug interaction information from the backend. Retrieved information is then

forwarded from the DruginteractionService back to the drugInteractionService.html.

To include CDS-Services into any EHR application, application developers shall add the

following line in the desired view file:

49

<div ng-include="'app/components/cds/common/cdsServices.html'" id="mis"></div>

Listing 18 One liner for displaying CDS-Services in EHR application

The included CDS-Systemervices.html, serves as a configuration file. It contains the list of

CDS-Services the application developer aims to include in the EHR application. Application

developers shall copy this file, rename it and make changes to include desired CDS-Services.

The application developer shall then modify Listing 18, to point to the newly created file. The

CDS-Systemervices.html is shown in Listing 22. This file implements variation points, VP1,

VP4 and VP6, discussed in Chapter 7.2.2. It shall also be used for tenant-based activation of

CDS-Services.

Application developers shall also modify the app/services/common/uriService/uriService.ts, to

provide the URL of CDS-Services APIs in the RESTful_WebAPI project.

The CDS-Services user interfaces are implemented as accordions (using Bootstrap) (see Figure

23). Initially all CDS-Services accordions are closed. A CDS-Service queries backend and

external services only after the user opens the accordions. This approach is adopted so the CDS-

Services remain unobtrusive to the clinical workflow (see Requirement 1 in Chapter 2).

Figure 23 CDS-Services user interaction interface

50

Drug interaction service

Figure 24 Drug interaction service user interface

When the user opens this accordion, the backend and corresponding external CDS webservices

are queried to retrieve drug interaction information for prescribed drugs. The user can hover the

info button on the right to get further information on the found interaction. Hovering the book

icon reveals steps performed by the external services to find interactions e.g. the resolving of

medication names (see Figure 25).

Figure 25 Additional information in drug interaction service user interface

Bevor prescribing a new medication, physicians can use the medication input field to check for

interactions between the considered and prescribed medications. This way physicians can avoid

adverse events due to interactions. Physicians are assisted in this process by the autocomplete

service as shown in Figure 26. The results for interactions between prescribed and considered

medications is displayed below the Medication input field as shown in Figure 27. The

Medication field uses the ngTagsInput AngularJS library, that holds a list of tags e.g. the

ASPIRIN/CAFFEINE/PROPOXYPHENE tag in Figure 27.

51

Figure 26 Autocomplete service in drug interaction user interface

Figure 27 Entering Medications for interaction check in drug interaction service user interface

Drug Adverse Events service

The drug adverse events service queries external CDS webservices after the accordion is

opened. Adverse events are retrieved for prescribed as well as considered medications in the

format: “Adverse event (Number of reports)”. The user interface also includes a Medication

field with autosuggest functionality. Figure 28 and Figure 29 show the drug adverse event

service user interface.

52

Figure 28 Autosuggest service in drug adverse event service user interface

Figure 29 Verifying drug adverse events of non-prescribed drugs

Clinical trial service

The clinical trial service template displays a prepared link to the ClincalTrials.gov webservice.

Prepared here means that parameters with patient-specific data are added to the link. The user

interface also displays the values of the parameters used in the link. Clicking on the link directs

the physician to the result page at ClinicalTrials.gov (see Figure 31).

Figure 30 Clinical trial service user interface

53

Figure 31 ClinicalTrials.gov patient-specific result page

EBM Guidelines service

The EBM guidelines user interface uses an iframe to display NCCN Guideline PDF files. The

displayed file is selected based on patient issues.

Figure 32 EBM Guidelines service user interface

54

Literature Service

The literature service user interface simply displays a list of relevant medical publications

together with a conclusion and a publication type. The conclusion is generated by leveraging

natural language processing techniques to identify concluding phrases within the abstracts of

found medical publications (Johannes Idelhauser 2016).

Figure 33 Literature service user interface

Terminology Service

The template is used by the drug interaction and drug adverse event service templates for

autosuggestion in their respective Medication fields as shown in Figure 26 and Figure 28. The

Terminology service template is also used in fields of the EHR e.g. for entering medication

prescriptions (see Figure 34).

55

Figure 34 Terminology service autosuggest in EHR medication field

7.5 Domain Testing using Sample Application Strategy

This section aims to evaluate domain artefacts from domain requirements engineering, domain

design and domain realization processes. The evaluation is performed using the Sample

Application Strategy. This section therefore discusses the integration of CDS-Services in a

sample EHR application and aims to address the following questions:

• What shall application developers do to integrate CDS in EHR applications?

• How easy can CDS-Services be integrated in EHR application?

7.5.1 Overview of the sample EHR application

The sample EHR application manages data for patients suffering from a sample issue. The

sample application data model is shown in Figure 42. Figure 35 shows an example of a Breast

Cancer SampleIssue linked to a patient (whose Medical Record Number (MRN) is 75s4X),

person, consultant and an organization via HL7Relationship associations.

56

Figure 35 Breast cancer SampleIssue

A folder called Sample is created at different points within the folder structure of the different

projects to host code specific to the sample application (see Figure 36). The SampleIssueDao

is used to perform sample application specific CRUD operations.

Figure 36 Introducing the Sample folder for Sample application classes

The following sections discuss the integration of CDS-Services in the sample application.

7.5.2 Core project

To integrate CDS-Services, the application developer creates a Sample folder in Services/CDS.

The application developer then creates Sample CDS-Service classes in the Sample folder e.g.

SamleDrugInteractionService (see Figure 37).

57

Figure 37 CDS-Service classes for Sample application in SAGE-CARE core project

Listing 19 Using the Sample drug interaction CDS-Service - SampleDrugInteractionService

Listing 19 shows the implementation of the SampleDrugInteractionService. All sample CDS-

Service classes have a common flow of logic. Patient-specific data is retrieved from the EHR

store (see Lines 24 and 30), processed (Line 34) and forwarded to the CDS-Service (Line 36).

7.5.3 RESTful_WebAPI

The application developer creates a Sample folder in Controllers/CDS and adds an ASP.NET

Web API controller (inherits from ApiController) class to the folder, namely, SampleCDS-

SystemervicesController (see Figure 38)

58

Figure 38 Creating the Sample application controller

 public class SampleCDSServicesController : ApiController
 {
 [Route("clinicalTrials/{patientId}/")]
 [HttpGet]
 public ICollection<ClinicalTrials> GetClinicalTrials(int patientId)
 {
 return SampleClinicalTrialService.FindClinicalTrials(patientId,
 SampleIssueDao.GetPersonByPatientId(patientId).Id);
 }

 [Route("drugInteractions/{patientId}/")]
 [HttpGet]
 public IList<DrugInteraction> GetDrugInterations(int patientId,
 [FromUri] List<string> otherMedications)
 {
 return SampleDruginteractionService
 .GetDrugInteractions(patientId, otherMedications);
 }

 [Route("getDrugAdverseEvents/{medication}/")]
 [HttpGet]
 public ICollection<DrugAdverseEvents> GetDrugAdverseEvents(string medication)
 {
 return SampleDrugAdverseEventsService.GetDrugAdverseEvents(medication);
 }

 [Route("patientDrugAdverseEvents/{patientId}/")]
 [HttpGet]
 public ICollection<DrugAdverseEvents> GetDrugAdverseEvents(int patientId)
 {
 return SampleDrugAdverseEventsService.GetDrugAdverseEvents(patientId);
 }

 [Route("medicalPublications/{issueId}/")]
 [HttpGet]
 public DocumentsAndEhrTerms SearchLiteratureForIssueId(int issueId)
 {
 var issue = HL7ObjectDao.FindById(issueId) as SampleIssue;
 return new SampleLiteratureService().SearchLiterature(issue);
 }

 …

 }

Listing 20 Specifying the Sample application Web API in SampleCDSServicesController.cs

59

Listing 20 shows the implementation of the SampleCDSServicesController class. The

SampleCDSServicesController specifies the Web API for the sample application business logic

in the Core project and handles incoming HTTP/S requests by forwarding them to

corresponding sample CDS-Services.

7.5.4 Client project

The application developer creates a sample folder in app/components/cds/sample. The

application developer then adds the SampleCDSServices.html file to this folder, copies the code

from the cdsServices.html file and configures enabled CDS-Services (see Figure 39).

Figure 39 Sample application core assets in the client project

To display the CDS-Services in the GUI of the sample EHR application, the application

developer adds just a line of code to the SamplePatientRecordView.html file as shown in

Listing 21.

60

Listing 21 SamplePatientRecordView.html - introducing CDS-Services UIs in the sample EHR

application

61

8 Evaluation

The aim of this section is to evaluate the, in this thesis, proposed and prototyped concepts.

Evaluation is performed based on the requirements in chapter 2 and guidelines from the Guides

Project Checklist tool (BVBA 2017a, 2017b).

In the following, each requirement is evaluated separately:

The CDS-Services shall

1. Be integrated into the clinical workflow:

This requirement is obviously met. The proposed approach for providing CDS, is passive

i.e. CDS-Services are queried only on user demand. Furthermore, the CDS-Services UIs are

situated beneath the EHR UIs to enforce unobtrusiveness to the physician’s workflow. The

CDS-Services also neither generate alerts nor return recommendations that require action

from the physician.

What is the impact of adding CDS-Services to the existing EHR application? (BVBA

2017b)

Conceptually, the CDS-Services are only used on user demand. The EHR application is

therefore not impacted by the introduction of the CDS-Services. However, the response

times of the CDS-Services are longer than those of the EHR application, as the CDS-

Services query external CDS information retrieval resources.

Can the CDS-Services improve the workload or work processes? (BVBA 2017b)

At least an effort is made by the EBM guidelines service. A proper assessment requires user

feedback.

2. Provide relevant information:

Does the decision support contain accurate information that is pertinent to the care of the

patient? (BVBA 2017b)

The CDS-Services provide patient-specific recommendations. This is possible due to the

integration of the CDS-Services in the EHR. To retrieve CDS content the EHR application

invokes the CDS passing patient-specific information.

Assessing the accuracy of provided recommendations is not obvious as it requires feedback

from the intended users. However, the selected information retrieval resources are widely

used in the health care domain.

62

Do the CDS-Services address the information needs of the physicians? (BVBA 2017b)

In chapter 4, the information needs of physicians at the point of care were identified to be

mainly associated with diagnosing health conditions, finding best treatment methods

(therapies) and drug prescriptions. Provided CDS-Services aim to address these needs

except for providing information for diagnosing health conditions.

Table 3 presents provided CDS-Services and addressed physician’s information needs.

Is it clear to the users why the decision support information is provided for a given

patient?(BVBA 2017b)

The UIs of the CDS-Services present patient-specific data that is used for querying CDS-

Services. However, the assessment of this requirement should be complemented with user

feedback.

3. Provide latest information:

Table 5 provides a list of information retrieval resources used by the CDS-Services and how

frequent the information is updated. However, a proper assessment also requires feedback

from physicians.

4. Pro-actively search and provide decision support without requiring entry of already existing

patient data:

This requirement is met thanks to the integration of the CDS-System in the EHR. Physicians

are not required to enter data that already exist within a patient´s EHR.

5. Be intuitive and easy to use:

Assessing this requirement is not obvious as it requires feedback from users. This demands

that a usability test must be performed which is out of the scope of this thesis. This is

considered as a point for future work.

63

6. Be comprehensive:

Like the previous requirement, this requirement is also not obvious to assess. This depends

on the selected information retrieval resources and requires feedback from users. Regarding

the information retrieval resources, effort was performed to select widely used information

retrieval resources. However, the use of commercial information retrieval resources may be

a major step in this direction.

7. Have low response times:

This requirement is not always met. The response times vary per CDS-Service. Also, it is

important to consider that patient-data is first retrieved from the EHR store before queries

are placed to the information retrieval resources.

Furthermore, the product line architecture shall

8. Support easy integration of CDS-Services into EHR applications:

This requirement is met. The steps required to integrate CDS-Services into EHR

applications are configuration steps and do not demand much effort (see chapter 7.5). The

steps could be summarized as, copying configuration files, editing these (commenting

undesired sections), and finally including one line of code (LOC) at a desired point in an

HTML file.

9. Enable introducing new CDS-Services, with moderate implementation effort:

This requirement is met: The proposed concept provides a pattern for the introduction of a

new CDS-Services. The application developer shall specify a properly generalized interface

for the new CDS-Service and implement a RESTful client logic in classes that realize the

interface.

10. Enable introducing new information retrieval resources, with moderate implementation

effort.

To introduce a new information retrieval resource for an existing CDS-Service, developers

shall create a class that realizes the interface specified for that service and provide RESTful

client logic for the targeted information retrieval resource. This requirement is therefore

met.

64

9 Related Work

SOA has been proposed as a promising approach for developing health information systems

that support interoperability. Many initiatives have been and are performed to provide standard-

based SOA resources. Some of these initiatives include:

• Healthcare Services Specification Project

Healthcare Services Specification Project (HSSP) is a collaborative effort of HL7 and

the Object Management Group (OMG). The aim of HSSP is to provide standards for

SOA-based services.

• OpenCDS:

OpenCDS is a “collaborative effort to develop open-source, standards-based clinical

decision support (CDS) tools.”(OpenCDS)

OpenCDS provides a platform that supports scalability and interoperability of Decision

Support Services (DSS). OpenCDS supports clinical decision support standards like

HL7 Decision Support Service (HL7 DSS), HL7 Virtual Medical Record (HL7 vMR)

and HL7 FHIR (HL7 FHIR 2017). The OpenCDS has been widely adopted (Welch et

al. 2014b; ICE - CDS Framework Wiki; Welch et al. 2014a)

• Healthcare Services Platform Consortium

Health Services Platform Consortium (HSPC) is a collaborative effort that aims to

provide a SOA-based “healthcare services platform” that supports development of high

quality and interoperable health care applications at reduced costs. HSPC supports the

following standards:

Data exchange standards HL7 FHIR

Terminology standards SNOMED CT(SNOMED International),

LOINC(LOINC), RxNorm(NLM 2018)

EHR integration SMART(SMART Health IT)

• SMART

“SMART Health IT is an open, standards based technology platform” that facilitates the

development of interoperable applications. SMART provides “open standards, open

source tools” and apps. (SMART Health IT)

65

10 Conclusion and Future Work

10.1 Conclusion

In this thesis, reusable CDS-Services were proposed to facilitate the integration of CDS in EHR

applications. The proposed concept aimed to fulfill both the requirements of the product line

owner and those of intended users, in this case physicians.

To achieve the thesis goals, the information needs of physicians at the point of care (decision

making time) were identified (see chapter 4). Studies reveal that the information needs of

physicians at the point of care are related to diagnosing patient health issues, identifying best

treatment methods and drug prescriptions. To meet their information needs, studies reveal that

physicians mainly refer to internet-based health information retrieval resources.

In this thesis, the proposed CDS-Services therefore implement RESTful client logic to retrieve

CDS information from such medical information retrieval resources that are freely accessible

and provide an API. Implemented CDS-Services include a drug interaction service, a drug

adverse events service, a clinical trials service, an EBM guideline service and a literature

service.

Several architectural approaches for developing CDS-Systems were identified and evaluated.

Studies reveal a wide adoption of SOA-based approaches for developing CDS-Systems.

Providing CDS functionality as a web service enables access to several EHR applications and

other health information systems e.g. CPOE systems. The SOA approach thus suits the

reusability requirements of product lines. The proposed concept therefore adopts a SOA-based

approach and places APIs in front the CDS-Services, Terminology Services and EHR Data

Access Services (see Chapter 6). In Chapter 7, the proposed concept is applied to the SAGE-

CARE product line of EHR applications. Core asset development activities are discussed based

on the SPLE Framework of (Pohl et al. 2005). The feasibility of the proposed concept and the

developed CDS core assets is asserted by prototyping a sample EHR application with integrated

CDS-Services.

The evaluation in chapter 8 reveals that the requirements for the thesis were met, apart from a

few that require feedback from users. Getting user feedback requires that a usability study must

be performed, but this is out of the scope of this work and considered as a point for future work.

66

10.2 Future Work

It is intended that the sage care product line presented in this thesis will be promoted to a

commercial product, that will be marketed by the NSilico Lifesciences Ltd. company. Future

work is required for this purpose.

In order to asses requirements 5, 6 and the general usability of the CDS-Services, a usability

study should be performed with physicians (Johannes Idelhauser 2016).

Furthermore, the use of commercial information retrieval resources is advised. This will require

the use of standardized CDS APIs. Amongst the many initiatives performed to provide

standardized SOA-based CDS, the HL7 DSS is advised, due to its wide adoption. In case the

HL7 DSS is adapted, the developed CDS core assets (for the application, RESTful API and

presentation layers) could be used to implement a CDS webservice as in the case of

SEBASTIAN (Kawamoto and Lobach 2005).

Another consideration for future work is the implementation of further CDS-Services e.g.:

• Drug information service: This service shall mainly provide information available in

medication leaflets, to enhance patient education (Johannes Idelhauser 2016). The

DailyMed (DailyMed 2018) service offers a freely accessible API that can support this

functionality

• Other proposed CDS-Services include, drug-dosing, drug-allergy-, drug-food-, drug-

disease-, and drug-pregnancy-interaction services (Kuperman et al. 2007)

• Differential diagnosis service: This service shall retrieve patients symptoms and provide

diagnostic decision support by proposing a list of diagnoses to be considered. (Hoffer

et al. 2005; Henderson and Rubin 2013; Bond et al. 2012)

Different physicians may require switching between information retrieval sources for a given

CDS-Service. To provide this functionality, variation mechanisms should be implemented, that

support late binding of supported information retrieval resources (Gacek and Anastasopoules

2001).

67

11 Appendices

11.1 Appendix A

Drug Information retrieval resources

Name Descriptions API Access D
ru

g
In

fo
rm

at
io

n

D
ru

g
In

te
ra

ct
io

n
s

A
d

ve
rs

e
Ev

en
ts

D
ru

g
A

n
n

o
u

n
ce

m
en

ts
/R

ec
al

ls

DailyMed Website by U.S. National Library
of Medicine (NLM), provides
high quality and up-to-date drug
labels. Updated daily by FDA.
Documents use structured XML
format

yes public &
free

✓ ✓ ✓

DrugBank Database with pharmacological
drug information on drugs and
their targets. Longer update
periods. Links to DrugBank for
nearly all drugs on Wikipedia.
Drug interactions feature no
information on their severity.

yes public &
free

 ✓

Drugs.com Website with drug information,
pill identification and drug
interaction checker for patients
and for health professionals.
Also provides data on modified
drug labels. Prohibited to
incorporate into any kind of IR
system.

no public &
free

✓ ✓ ✓

Electronic
Medicines
Compendium

Information on drugs licensed
for use in the UK. Contains
Summaries of Product
Characteristics and Patient
Information Leaflets

no public &
free

✓ ✓ ✓

Expocrates Point-of-care medical
information about drugs,
diseases and diagnostic tools
over website or mobile app also
features news feed of product
announcements and medical
news.

no partly free /
subscription
needed.

✓ ✓ ✓ ✓

MedlinePlus
Connect

Service by NLM, provides
unstructured natural language

yes** public &
free

✓ * ✓ *

68

drug information/labelling and
health topic overviews

Medscape Many clinical information
resources available over website
or mobile app. Articles updated
yearly.

no free,
registration
required

✓ ✓ ✓

OpenFDA API Public API on reported Adverse
Effects, drug labelling and drug
recall reports. Data consists of
individual reports and must be
aggregated in order to use it.

yes public &
free

 ✓ ✓

ResearchAE Adverse effects experimental
research application based on
OpenFDA data. Not to be used in
clinical settings.

no public &
free

 ✓ ✓

RxNav Provides access to different drug
resources like RxNorm, NDF-RT
and DrugBank. Drug
normalisation over different
codes and systems by using
RxNorm, drug interactions from
DrugBank.

yes public &
free

 ✓

SIDER Aggregated data on side effects
for drugs target prediction from
publicly available sources.
Infrequent updates. Download
of dataset possible.

no public &
free

 ✓

Wolters
Kluwer
Clinical Drug
Information

Commercial drug information
APIs including interaction,
adverse effects, indications and
mapping to RxNorm.

yes commercial ✓ ✓ ✓

Table 12 Drug Information Data Sources (Johannes Idelhauser 2016)

69

11.2 Appendix B

Clinical Trial information retrieval resources

Name Description API Access Type Country

ClinicalTrials.gov Trial registry from US

National Institute of Health.

39% are U.S. only trials.

yes Public &

free

Search

Service

Worldwide

with a

focus on

U.S. (39%)

EU Clinical Trials

Register

Clinical Trials Register for

trials in the EU

no Public &

free

Register European

Union

German Clinical

Trials Register

German clinical trial register.

Also imports trials from

clinicaltrials.gov that are

located in Germany

no Public &

free

Register Germany

WHO

International

Clinical Trials

Registry Platform

Search portals to central

database with links to original

records. Regular fetch of

trials from currently 16 data

providers, including sources

mentioned earlier

no Public &

free

Search

Service

Worldwide

Clinical Trials

Reporting

Program (CRTP)

Clinical trial database yes Public &

free

Search

Service

U.S.

OpenTrials Clinical trial database yes Public &

free

Search

Service

Worldwide

Table 13 Identified data sources for the clinical trial locator (Johannes Idelhauser 2016)

70

11.3 Appendix C

EBM Guidelines information retrieval resources

Name Description API Access Volume

BMJ Best

Practice

Ebidence-based information to

offer step-by-step guidance on

diagnosis, prognosis, treatment

and prevention.

yes subscription ?

DynaMedPlus Evidence-based clinical overviews

and recommendations. Content

updated daily. Also offers

calculators, decision trees and unit

and dose converters.

yes subscription >3,200 topics

and

>500journals

EBMeDS Platform-Independent web service

CDS-System with EBM module

yes commercial

Essential

Evidence

POC system with topics,

guidelines, abstracts, and

summaries of most common

clinical cases. Also links to other

resources like Cochrane Library

and Evidence-Based Medicine

Guidelines.

? subscription >13,000

topics,

guidelines,

abstracts &

summaries

Medscape /

eMedicine

Largest clinical knowledge base

available freely. Articles updated

yearly. Also available as mobile

application.

no Free,

registration

required

~6,800

articles

Physician

Data Query

Cancer database from the U.S.

National Cancer Institute.

Contains peer-reviewed

information on cancer treatment in

the form of summaries for patients

and professionals.

no public

UpToDate Popular evidence-based POC tool

for a wide range of disciplines but

targeted on internal medicine.

Extensive peer-review process to

ensure accurate and precise

recommendations.

yes subscription,

some articles

free

~8,500 topics

Table 14 EBM Recommendation Sources (Johannes Idelhauser 2016)

71

11.4 Appendix D

Medical publication information retrieval resources

Name Description API Access Volume

Cochrane

Library

Collection of health-related

databases. Its core is

Cochrane Reviews, a

database of systematic

reviews and meta analyses.

? Subscription ?

Google Scholar Search engine for scientific

publications of all fields.

Automatically crawls many

journals.

no public & free estimated at 160

million articles

Ovid Science search platform

that includes many

databases, including MED-

LINE

? subscription ?

PubMed Search engine mainly

accessing MEDLINE

database and focused on

health topics. Query

expansion by using MeSH

ontology.

yes public & free >24 million records,

about 500,000 new

records each year

ScienceDirect Website with access to large

database of scientific

publications from many

fields.

yes free

(abstracts),

subscription

(full-text)

12 million records

from 3,500 journals

and 34,000 eBooks

Scopus Database with abstracts and

citations from many

academic journals and

many scientific fields, not

focused on health topics.

yes Paid

subscription

~60 million records,

>21,500 peer-

reviewed journals

Springer API Access to all Springer

published journals, also

includes BioMedCentral

open-access publications.

yes partly free,

partly

subscription

~ 2,000 journals and >

6,500 books per year,

access to >10 million

online documents

Table 15 Literature Service Data Sources (Johannes Idelhauser 2016)

72

11.5 Appendix E

Drug interaction service sequence diagram

Figure 40 Drug interaction service sequence diagram

73

11.6 Appendix F

CDS-Services: drug adverse events service sequence diagram

Figure 41 Drug adverse events service sequence diagram

74

11.7 Appendix H

SAGE-CARE Sample EHR application data model

Figure 42 SAGE-CARE Information Model

75

11.8 Appendix I

SAGE-CARE_Client CDS-Services configuration template

Listing 22 SAGE-CARE_Client configuration file template CDS-Systemervices.html

76

11.9 Appendix J

HL7 RIM

Figure 43 HL7 Reference Information Model (HL7 RIM)

77

12 Publication bibliography

Advancing Open Standards for the Information Society (OASIS). Reference model for service

oriented architecture 1.0 (2006). Available online at http://docs.oasis-open.org/soa-rm/v1.0/,

checked on 7/10/2018.

Bates, D. W.; Leape, L. L.; Cullen, D. J.; Laird, N.; Petersen, L. A.; Teich, J. M. et al. (1998):

Effect of computerized physician order entry and a team intervention on prevention of serious

medication errors. In JAMA 280 (15), pp. 1311–1316.

Beez, Ulrich; Humm, Bernhard G.; Walsh, Paul (2015): Semantic AutoSuggest for Electronic

Health Records. In Hamid R. Arabnia, Leonidas Deligiannidis, Quoc-Nam Tran, International

Conference on Computational Science and Computational Intelligence (Eds.): 2015

International Conference on Computational Science and Computational Intelligence. CSCI

2015 : 7-9 December 2015, Las Vegas, Nevada, USA : proceedings. 2015 International

Conference on Computational Science and Computational Intelligence (CSCI). Las Vegas, NV,

USA, 12/7/2015 - 12/9/2015. International Conference on Computational Science and

Computational Intelligence; CSCI; Symposium on Computational Science; CSCI-ISCS;

Symposium on Computational Intelligence; CSCI-ISCI; Symposium on Education; CSCI-

ISED; Symposium on Internet of Things & Internet of Everything; CSCI-ISOT; Symposium

on Big Data & Data Science; CSCI-ISBD; Symposium on Signal & Image Processing,

Computer Vision & Pattern Recognition; CSCI-ISPC; Symposium on Artificial Intelligence;

CSCI-ISAI; Symposium on Parallel & Distributed Computing & Computational Science;

CSCI-ISPD; Symposium on Mobile Computing, Wireless Networks & Security; CSCI-ISMC;

Symposium on Health Informatics & Medical Systems; CSCI-ISHI. Piscataway, NJ: IEEE,

pp. 760–765.

Berner, Eta S. (Ed.) (2016a): Clinical Decision Support Systems. Theory and Practice. 3rd ed.

2016. Cham, s.l.: Springer International Publishing (Health Informatics). Available online at

https://ebookcentral.proquest.com/lib/subhh/detail.action?docID=4613364.

Berner, Eta S. (Ed.) (2016b): Clinical Decision Support Systems. Theory and Practice. 3rd ed.

2016. Cham, s.l.: Springer International Publishing (Health Informatics). Available online at

http://ebookcentral.proquest.com/lib/subhh/detail.action?docID=4613364.

Bond, William F.; Schwartz, Linda M.; Weaver, Kevin R.; Levick, Donald; Giuliano, Michael;

Graber, Mark L. (2012): Differential diagnosis generators: an evaluation of currently available

computer programs. In Journal of general internal medicine 27 (2), pp. 213–219. DOI:

10.1007/s11606-011-1804-8.

78

BVBA, Zenjoy (2017a): Guides Project. Guides Checklist. Available online at

https://www.guidesproject.org/, updated on 11/20/2017, checked on 8/11/2018.

BVBA, Zenjoy (2017b): Guides Project Checklist. Overview of success factors for guideline-

based computerised decision support (CDS). Available online at

https://www.guidesproject.org/success-features, updated on 11/20/2017, checked on

8/11/2018.

Clarke, Martina A.; Belden, Jeffery L.; Koopman, Richelle J.; Steege, Linsey M.; Moore, Joi

L.; Canfield, Shannon M.; Kim, Min S. (2013): Information needs and information-seeking

behaviour analysis of primary care physicians and nurses: a literature review. In Health

information and libraries journal 30 (3), pp. 178–190. DOI: 10.1111/hir.12036.

Clements, Paul; Northrop, Linda (2009): Software product lines. Practices and patterns. 7. print.

Boston, San Francisco, New York, Toronto, Montreal, London, Munich, Paris, Madrid,

Capetown, Sydney, Tokyo, Singapore, Mexico City: Addison-Wesley (SEI series in software

engineering).

ClinicalTrials.gov. Available online at https://clinicaltrials.gov/, checked on 7/5/2018.

Cloud-10 Multi Tenancy and Physical Security - OWASP (2018). Available online at

https://www.owasp.org/index.php/Cloud-10_Multi_Tenancy_and_Physical_Security, updated

on 2/1/2018, checked on 7/17/2018.

Col, Nananda; Correa-de-Araujo, Rosaly (2014): Consumers and Clinical Decision Support. In

: Clinical Decision Support: Elsevier, pp. 741–769.

COMM/RTD: SemAntically integrating Genomics with Electronic health records for Cancer

CARE | Projects | H2020 | CORDIS | European Commission. Publication Office/CORDIS.

Available online at https://cordis.europa.eu/project/rcn/194165_en.html, checked on

6/30/2018.

DailyMed. Web Services (2018). Available online at

https://dailymed.nlm.nih.gov/dailymed/app-support-web-services.cfm, checked on 8/11/2018.

Del Fiol, Guilherme; Yu, Hong; Cimino, James J. (2014): Infobuttons and Point of Care Access

to Knowledge. In : Clinical Decision Support: Elsevier, pp. 515–549.

Gacek, Critina; Anastasopoules, Michalis (2001): Implementing product line variabilities. In

SIGSOFT Softw. Eng. Notes 26 (3), pp. 109–117. DOI: 10.1145/379377.375269.

Greenes, Robert A. (2014a): Clinical Decision Support. The Road to Broad Adoption. 2nd ed.

Burlington: Elsevier Science.

79

Greenes, Robert A. (2014b): Features of Computer-Based Clinical Decision Support. In :

Clinical Decision Support: Elsevier, pp. 111–144.

HealthIT.gov (2018): EHR. What is an electronic health record (EHR)? Available online at

https://www.healthit.gov/faq/what-electronic-health-record-ehr, updated on 8/8/2018, checked

on 8/9/2018.

Henderson, Emily J.; Rubin, Greg P. (2013): The utility of an online diagnostic decision support

system (Isabel) in general practice: a process evaluation. In JRSM short reports 4 (5), p. 31.

DOI: 10.1177/2042533313476691.

HL7 DSS. HL7 Decision Support Service (DSS). Available online at

http://www.hl7.org/implement/standards/product_brief.cfm?product_id=12, checked on

8/14/2018.

HL7 FHIR (2017). Available online at https://www.hl7.org/fhir/, updated on 6/7/2018, checked

on 8/14/2018.

HL7 RIM. HL7 Reference Information Model. Available online at

http://www.hl7.org/implement/standards/rim.cfm, checked on 8/9/2018.

HL7 Standards. Available online at

http://www.hl7.org/implement/standards/index.cfm?ref=nav, checked on 8/9/2018.

HL7 vMR. HL7 Version 3 Standard: Clinical Decision Support; Virtual Medical Record (vMR)

Logical Model, Release 2. Available online at

http://www.hl7.org/implement/standards/product_brief.cfm?product_id=338, checked on

8/14/2018.

Hoffer, Edward P.; Feldman, Mitchell J.; Kim, Richard J.; Famiglietti, Kathleen T.; Barnett, G.

Octo (2005): DXplain: Patterns of Use of a Mature Expert System. In AMIA Annual Symposium

Proceedings, pp. 321–325.

Holst, H.; Aström, K.; Järund, A.; Palmer, J.; Heyden, A.; Kahl, F. et al. (2000): Automated

interpretation of ventilation-perfusion lung scintigrams for the diagnosis of pulmonary

embolism using artificial neural networks. In European journal of nuclear medicine 27 (4),

pp. 400–406.

HSPC. Healthcare Services Platform Consortium. Available online at

https://www.hspconsortium.org/about-us/our-approach/, checked on 8/14/2018.

HSRIC: Health Informatics (2018). Available online at

https://www.nlm.nih.gov/hsrinfo/informatics.html, updated on 6/30/2018, checked on

6/30/2018.

80

HSSP. Healthcare Services Specification Program (HSSP). Available online at

http://hssp.wikispaces.com/, checked on 8/14/2018.

Humm, Bernhard G.; Walsh, Paul (2015): Flexible yet Efficient Management of Electronic

Health Records. In Hamid R. Arabnia, Leonidas Deligiannidis, Quoc-Nam Tran, International

Conference on Computational Science and Computational Intelligence (Eds.): 2015

International Conference on Computational Science and Computational Intelligence. CSCI

2015 : 7-9 December 2015, Las Vegas, Nevada, USA : proceedings. 2015 International

Conference on Computational Science and Computational Intelligence (CSCI). Las Vegas, NV,

USA, 12/7/2015 - 12/9/2015. International Conference on Computational Science and

Computational Intelligence; CSCI; Symposium on Computational Science; CSCI-ISCS;

Symposium on Computational Intelligence; CSCI-ISCI; Symposium on Education; CSCI-

ISED; Symposium on Internet of Things & Internet of Everything; CSCI-ISOT; Symposium

on Big Data & Data Science; CSCI-ISBD; Symposium on Signal & Image Processing,

Computer Vision & Pattern Recognition; CSCI-ISPC; Symposium on Artificial Intelligence;

CSCI-ISAI; Symposium on Parallel & Distributed Computing & Computational Science;

CSCI-ISPD; Symposium on Mobile Computing, Wireless Networks & Security; CSCI-ISMC;

Symposium on Health Informatics & Medical Systems; CSCI-ISHI. Piscataway, NJ: IEEE,

pp. 771–775.

ICE - CDS Framework Wiki. Available online at

https://cdsframework.atlassian.net/wiki/spaces/ICE/overview, checked on 8/14/2018.

Implementing a multi-tenant offering in Azure using CSP – Microsoft US Partner Community

blog. Available online at

https://blogs.technet.microsoft.com/msuspartner/2018/01/26/implementing-a-multi-tenant-

offering-in-azure-using-csp-part-1/, checked on 7/17/2018.

ISO/TR 20514:2005. Health informatics - Electronic health record - Definition, scope and

context. Available online at https://www.iso.org/obp/ui/#iso:std:iso:tr:20514:ed-1:v1:en,

checked on 8/9/2018.

Johannes Idelhauser (2016): A Clinical Decision Support System for Personalised Medicine.

Master thesis. University of Applied Sciences Darmstadt, Darmstadt.

Kawamoto, Kensaku; Del Fiol, Guilherme; Orton, Charles; Lobach, David F. (2010): System-

agnostic clinical decision support services: benefits and challenges for scalable decision

support. In The open medical informatics journal 4, pp. 245–254. DOI:

10.2174/1874431101004010245.

81

Kawamoto, Kensaku; Fry, Emory; Greenes, Robert (2014): Integration of Knowledge

Resources into Applications to Enable CDS. In : Clinical Decision Support: Elsevier, pp. 819–

849.

Kawamoto, Kensaku; Lobach, David F. (2005): Design, Implementation, Use, and Preliminary

Evaluation of SEBASTIAN, a Standards-Based Web Service for Clinical Decision Support. In

AMIA Annual Symposium Proceedings 2005, pp. 380–384.

Kohn, Linda T.; Corrigan, Janet M.; Donaldson, Molla S. (Eds.) (2000): To Err is Human:

Building a Safer Health System. National Academies Press (US). Washington (DC).

Kuperman, Gilad J.; Bobb, Anne; Payne, Thomas H.; Avery, Anthony J.; Gandhi, Tejal K.;

Burns, Gerard et al. (2007): Medication-related clinical decision support in computerized

provider order entry systems: a review. In Journal of the American Medical Informatics

Association : JAMIA 14 (1), pp. 29–40. DOI: 10.1197/jamia.M2170.

LOINC. The freely available standard for identifying health measurements, observations, and

documents. Available online at https://loinc.org/, checked on 8/14/2018.

Loya, Salvador Rodriguez; Kawamoto, Kensaku; Chatwin, Chris; Huser, Vojtech (2014):

Service oriented architecture for clinical decision support: a systematic review and future

directions. In Journal of medical systems 38 (12), p. 140. DOI: 10.1007/s10916-014-0140-z.

Maggio, Lauren A.; Cate, Olle ten; Moorhead, Laura L.; van Stiphout, Feikje; Kramer, Bianca

M. R.; ter Braak, Edith et al. (2014): Characterizing physicians’ information needs at the point

of care. In Perspectives on Medical Education 3 (5), pp. 332–342. DOI: 10.1007/s40037-014-

0118-z.

Microsoft (Ed.) (2012): Developing Multi-tenant Applications for the Cloud. on Microsoft

Windows Azure. With assistance of Dominic Betts, Alex Homer, Alejandro Jezierski, Masashi

Narumoto, Hanz Zhang, checked on 7/16/2018.

Mike Wasson (2018): Identity Management for Multitenant Applications. Available online at

https://docs.microsoft.com/en-us/azure/architecture/multitenant-identity/, updated on

7/13/2018, checked on 7/16/2018.

Multi-tenant SaaS patterns - Azure SQL Database (2018). Available online at

https://docs.microsoft.com/en-us/azure/sql-database/saas-tenancy-app-design-patterns,

updated on 7/13/2018, checked on 7/17/2018.

National Academies Press (US) (2001): Crossing the Quality Chasm: A New Health System

for the 21st Century. Washington (DC).

82

NLM (2018): RxNorm. Available online at https://www.nlm.nih.gov/research/umls/rxnorm/,

updated on 6/23/2018, checked on 8/14/2018.

NSilico: Simplicity MDT | Products - NSilico. Available online at

http://www.nsilico.com/SimplicityMDT, checked on 7/5/2018.

OpenCDS: OpenCDS Home. Available online at http://www.opencds.org/, checked on

8/14/2018.

Patrick Spitzer (2016): A Dynamic Product Line for an Electronic Health Record Management

System in Cancer Care. Master thesis. University of Applied Sciences Darmstadt, Darmstadt.

Phansalkar, Shobha; Desai, Amrita A.; Bell, Douglas; Yoshida, Eileen; Doole, John;

Czochanski, Melissa et al. (2012): High-priority drug–drug interactions for use in electronic

health records. In Journal of the American Medical Informatics Association : JAMIA 19 (5),

pp. 735–743. DOI: 10.1136/amiajnl-2011-000612.

Pohl, Klaus; Böckle, Günter; Linden, Frank (2005): Software Product Line Engineering.

Foundations, Principles, and Techniques. Berlin, Heidelberg: Springer-Verlag Berlin

Heidelberg. Available online at

http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10229377.

Rodriguez-Loya, Salvador; Kawamoto, Kensaku (2016): Newer Architectures for Clinical

Decision Support. In Eta S. Berner (Ed.): Clinical Decision Support Systems. Theory and

Practice, vol. 8. 3rd ed. 2016. Cham, s.l.: Springer International Publishing (Health

Informatics), pp. 87–97.

Row-Level Security (2018). Available online at https://docs.microsoft.com/en-

us/sql/relational-databases/security/row-level-security?view=sql-server-2017, updated on

7/13/2018, checked on 7/17/2018.

SMART Health IT. Available online at https://smarthealthit.org/, checked on 8/14/2018.

SNOMED International. Available online at https://www.snomed.org/snomed-ct, checked on

8/14/2018.

SOA Features and Benefits. Available online at http://www.opengroup.org/soa/source-

book/soa/p4.htm, checked on 7/26/2018.

Tino Landmann (2017): Evidence-Based Medical Recommendations for Personalized

Medicine. Master thesis. University of Applied Sciences Darmstadt, Darmstadt.

Ulrich Beez (2015): Terminology-Based Retrieval of Medical Publications. Master thesis.

University of Applied Sciences Darmstadt, Darmstadt.

83

Welch, Brandon M.; Loya, Salvador Rodriguez; Eilbeck, Karen; Kawamoto, Kensaku (2014a):

A proposed clinical decision support architecture capable of supporting whole genome

sequence information. In Journal of personalized medicine 4 (2), pp. 176–199. DOI:

10.3390/jpm4020176.

Welch, Brandon M.; Rodriguez-Loya, Salvador; Eilbeck, Karen; Kawamoto, Kensaku (2014b):

Clinical Decision Support for Whole Genome Sequence Information Leveraging a Service-

Oriented Architecture: a Prototype. In AMIA Annual Symposium Proceedings 2014, pp. 1188–

1197.

What is SaaS? Software as a Service | Microsoft Azure. Available online at

https://azure.microsoft.com/en-us/overview/what-is-saas/, checked on 7/17/2018.

WHO: ICTRP Search Portal. Available online at http://apps.who.int/trialsearch/, checked on

7/5/2018.

Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, Chang Z, Woolsey J.:

DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic

Acids Res. 2006 Jan 1;34(Database issue):D668-72. 16381955.

Wright, Adam; Sittig, Dean F. (2008): A four-phase model of the evolution of clinical decision

support architectures. In International journal of medical informatics 77 (10), pp. 641–649.

DOI: 10.1016/j.ijmedinf.2008.01.004.

	1 Introduction
	2 Problem statement
	3 Background
	3.1 Electronic Health Records
	3.2 Health Level Seven Reference Information Model
	3.3 Clinical Decision Support Systems
	3.4 Software product lines
	3.4.1 Software product line engineering
	3.4.2 Domain engineering
	3.4.3 Application engineering

	3.5 Cloud computing and Multitenancy

	4 CDS Information
	4.1 Physicians’ information needs
	4.2 Information retrieval resources for CDS content

	5 Architectures for Clinical Decision Support Systems
	5.1 Evolution of CDS architectures
	5.1.1 Stand-alone CDS-Systems
	5.1.2 Integrated CDS-Systems
	5.1.3 Standards-based CDS-Systems
	5.1.4 Service oriented CDS-Systems

	5.2 CDS-System design components

	6 SOA-based CDS-Services
	6.1 Drug interaction service
	6.2 Drug adverse events service
	6.3 Clinical trial service
	6.4 Literature service
	6.5 Terminology service

	7 The SAGE-CARE product line use case
	7.1 Product Management
	7.2 Domain requirements engineering
	7.2.1 Commonality analysis
	7.2.2 Variability analysis

	7.3 Domain design
	7.4 Domain realization
	7.4.1 SAGE-CARE_Core project
	7.4.2 SAGE-CARE_RESTful_WebAPI
	7.4.3 SAGE-CARE_Client project

	7.5 Domain Testing using Sample Application Strategy
	7.5.1 Overview of the sample EHR application
	7.5.2 Core project
	7.5.3 RESTful_WebAPI
	7.5.4 Client project

	8 Evaluation
	9 Related Work
	10 Conclusion and Future Work
	10.1 Conclusion
	10.2 Future Work

	11 Appendices
	11.1 Appendix A
	11.2 Appendix B
	11.3 Appendix C
	11.4 Appendix D
	11.5 Appendix E
	11.6 Appendix F
	11.7 Appendix H
	11.8 Appendix I
	11.9 Appendix J

	12 Publication bibliography

