
Flexible yet Efficient Management of

Electronic Health Records1

Bernhard G. Humm

Hochschule Darmstadt – University of Applied Sciences

Darmstadt, Germany

bernhard.humm@h-da.de

Paul Walsh

NSilico Lifescience Ltd.

Bishopstown, Co. Cork, Ireland

paul.walsh@nsilico.com

Abstract—This paper presents an approach for managing

electronic health record (EHR) data in a flexible yet efficient way.
The data model is based on the HL7 Reference Information Model.
If clinical requirements change, the data model can be extended
by editing a schema spreadsheet. A code generator and the use of
state-of-the-art ORM tools allow consistency between EHR
application and database. Due to the genericity of the approach,
cross-cutting concerns like concurrency control and auditing can
be implemented widely.
The approach has been implemented in form of an EHR
framework. As a proof of concept, a subset of a commercial
melanoma care EHR application has successfully been
implemented.

Keywords—EHR; HL7; code generation; efficiency; flexibility

I. INTRODUCTION

Medical information technology has recently advanced in
many countries, and enormous amounts of clinical data are
already stored as electronic health records (EHRs) [1]. At the
same time, the domain of clinical information has evolved and
expanded rapidly and continues to do so [2]. For example U.S.
healthcare data in 2011 is reported to have reached, 150
exabytes, while a Californian health network it is believed to
have up to 44 petabytes of data from EHRs, including images
and annotations [3],[4]. This leads to a dilemma. On the one
hand side, efficient management (storage and retrieval) is
necessary to deal with large amounts of EHR data. On the other
hand, flexibility is needed to cope with the rapid evolution and
expansion of EHR data schemas.

While static approaches provide high efficiency, they lack
flexibility. The advantages and disadvantages of dynamic
approaches are complementary. In this paper, we present a
hybrid approach that combines the advantages of static and
dynamic approaches.

1 This work was funded by the European Commission, Horizon 2020 Marie Skłodowska-Curie

Research and Innovation Staff Exchange, under grant no 644186.

Regulations in various countries focus on the privacy /
security aspects of EHRs in order to prevent potential abuses
(e.g., [5]). However, those aspects are out of this paper’s scope.

The remainder of this paper is structured as follows.
Section II details requirements for managing EHRs. Section III
reviews existing approaches. Sections IV and V detail our
solution and describe an implementation. Section VI evaluates
our approach. Section VII concludes this paper.

II. REQUIREMENTS

A solution for managing EHR we expect to meet the
following requirements.

1. General: The data model shall be capable of handling
all kinds of EHR data that may occur in daily clinical
practice, e.g. melanoma issues, breast cancer cases, etc.

2. Flexible: New entities and attributes may be added
easily over time without the necessity of complex data
migrations during production.

3. Efficient: Storage and retrieval of large amounts of
EHRs is efficient in terms of access performance (read /
write) as well as storage space.

4. Convenient: Programming abstractions for creating and
querying EHR data (object / relational mapping) and
state-of-the-art development support like intelligent
code completion shall be supported.

5. Interoperable: importing and exporting EHRs from
and to other medical applications shall be supported.

6. Cross-cutting concerns: Cross-cutting concerns like
auditing, traceability etc. shall be supported

III. RELATED WORK

A. Static Approaches
 In traditional business information systems development, a

static, bespoke data model is developed and implemented for a
set of required use cases [6]. The development of static data
models for EHR applications is common practice, too. For
example, the data model of the open source EHR management

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.84

772

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.84

771

application Caisis ([7], [8], www.caisis.org) contains more than
200 tables with more than 5,000 attributes (columns) in total.
Tables are suited to most specific medical use cases, e.g.

DxImageEndorectalUltrasound. The advantage of the
approach is obvious: via database indexing, the performance of
the EHR application can be optimized individually for each use
case – thus, it is efficient. However, the static nature of the data
model induces a high cost when it comes to new or modified use
cases. Each new medical procedure in combination requires the
extension of the data model and potentially the need to migrate
data within running EHR applications.

B. Entity Attribute Value Approach
Because medical procedures advance constantly, researchers

and practitioners have long tried to alleviate the disadvantages
of static approaches by dynamic approaches. The entity attribute
value (EAV) approach [9] has been applied in various life
sciences applications, e.g., [2], [11], [12], and [13].

In the EAV approach, data are conceptually stored in a single
table with three columns: an Entity (the object being described),
an Attribute (an aspect of the object being described), and the
Value for that attribute. The advantage lies in the flexibility to
add entities and attributes at runtime. The drawback of an EAV
system is that the data’s physical organization is significantly
different from the way users conceptualize it (as one column per
attribute) [9]. Therefore, accessing EAV data (adding, querying)
is inconvenient from a programmer’s point of view. Also, access
performance may be poor since numerous join operations are
required when retrieving whole sets of patient data.

One can say that the EAV approach’s advantages and
disadvantages are complementary to those of the static
approach.

C. OpenEHR
openEHR is an open standard that specifies the management

and storage, retrieval and exchange of health data in EHRs, with

the aim of providing a powerful means of expressing health

information so it can be understood and processed wherever

there is a need, independently of a reference model.

This is achieved through the use of an "archetype", which

provides a place to formally define data definitions. Archetypes

are collected into libraries, which are re-usable domain content

definitions, which are created, reviewed and published by

domain experts. Templates are used in openEHR used to

logically represent patient specific data by referencing the

correct data definitions from archetypes. This approach

enforces standardization of medically defined terms over all

layers that allows the reuse of semantically defined terms that

are more universally understood. However, openEHR has

limited adoption due to the modeling learning curve by

clinicians. Ultimately, openEHR can be viewed as an EAV

approach at the data level.

D. HL7 Reference Information Model
Health Level Seven (HL7, [10], www.hl7.org) is a set of

standards for primarily concerned with transferring EHR data

between software applications of healthcare providers. HL7
defines a Reference Information Model (RIM), an ANSI
approved standard which is described as “the cornerstone of the
HL7 development process”. However, HL7 does not specify a
concrete EHR data model or EHR application.

IV. FLEXIBLE YET EFFICIENT MANAGEMENT OF EHRS

In this section, we present a hybrid solution for managing
EHRs which combines the advantages of static and dynamic
approaches and thus is flexible yet efficient and addresses some
of the limitations of related work.

A. The Basis: HL7 Reference Information Model
Our approach is based on the HL7 RIM. Fig. 1 shows the

main base entity classes of the RIM as UML class diagram.

Fig. 1: Main base entity classes of the HL7 RIM

The core of the HL7 RIM is simple and generic in order to
support all aspects of EHR. The main base entity classes are:

� Entity may include persons as well as organizations.

� Role allows specifying roles which persons and

organizations may have in a clinical setting, e.g. patient

or consultant. Role is separated from Entity to allow
modelling that one person may have various roles.

� Act comprises clinical documents, encounters,

observations, procedures, etc., i.e., the main EHR data.

For a concrete EHR data model, concrete classes may be
defined as subclasses of the base entity classes. See Fig. 2

Fig. 2: Classes for melanoma care EHR application

 For example, we will use a real-world clinical case study in
the field of melanoma treatment. Melanoma are a type of cancer
that develops from the pigment-containing cells known as
melanocytes and patients can present with multiple classes of
melanoma lesions in a wide range of sites on the skin and other
organs. The flexibility of the model is utilized by defining the

classes MelanomaIssue (detail data for a melanoma lesion)

and MDTTopic (topic to be discussed at a multidisciplinary

team meeting) are defined as subclasses of Act.

Using this data model, concrete patient data may be
represented. See an example as UML object diagram in Fig. 3.

773772

Fig. 3: Sample patient EHR data

Patient John Doe with MRN 4711 has a malignant melanoma
on his neck with TStage PT2A. The treating consultant is Jason
Kelly of Cork University Hospital. This illustrates that this
relatively simple model can be used to capture the essence of
patient case. This approach can then easily be extended to a wide
range of ad hoc clinical scenarios by the use of straight forward
modelling via a spreadsheet tool, as shown in Section B below.
Systems such as openEHR on the other hand require third party
modelling tools and have a steeper learning curve.

B. Data Model Configuration
We support convenient modelling of concrete EHR classes

and their attributes in a schema spreadsheet. See Fig. 4.

Fig. 4: Schema spreadsheet for editing the EHR data model

The schema spreadsheet contains columns for editing classes
and their attributes including attribute name, datatype, and

cardinality min/max. For example, the class Patient contains

an attribute Anticoagulents of datatype Medication
with cardinality 0..* (zero to many).

C. Code Generation
A code generator transforms the data model specified in the

schema spreadsheet into an object-oriented programming
language of choice. For example, if the EHR application is

implemented in C#, the following source code for class Patient
can be generated:

public partial class Patient : Role
{
 public virtual CNSIssue CNSIssue { get; set; }
 public virtual Mobility Mobility { get; set; }
 public virtual String MRN { get; set; }
 public virtual ResidentialCare ResidentialCare { get; set; }
 public virtual ICollection<Medication> Anticoagulents { get; set; }
 public virtual ICollection<Medication>ImmuneSuppressionDrugs {get; set;}
 public virtual String ImmuneSuppressionDrugsDetails { get; set; }
 public virtual ICollection<Medication> NonAnticoagulents { get; set; }
 public virtual String NonAnticoagulentsDetails { get; set; }
 public virtual Person Person { get; set; }
}

D. Database Schema
Using widely used object/relational mapping (ORM) tools

like, e.g., .NET Entity Framework, the generated classes can be
mapped to tables of a relational database. ORM tools provide
different strategies for mapping class inheritance hierarchies to
tables: (a) table per hierarchy, (b) table per type, and (c) table
per concrete class.

Using strategy (a) table per hierarchy, the generated EHR
classes are mapped to three database tables according to the HL7

RIM base classes Entity, Role, and Act. See Fig. 5.

Fig. 5: Database schema

E. Sparsity
When using strategy (a) table per hierarchy, the ORM tool

generates a discriminator column to discriminate the various
subclasses of the inheritance hierarchy. The table contains all
attributes of all subclasses.

One effect of this strategy is sparse tables since columns for

attributes of different subclasses remain NULL. See Fig. 6.

Fig. 6: Sparse database tables

Columns like FirstName, FamilyName, and

DateOfBirth are relevant for persons only and remain NULL

for Organisations; and vice versa for Columns like Name.

774773

For very large data sets, sparse tables could result in poor
disk space efficiency. However, state-of-the-art databases like,
e.g., MS SQL Server offer sparse column options that optimize
space efficiency on the database level.

F. Extensions
1) m:n Relationships
If m:n relationships between EHR classes are needed, the

simple data model shown in Fig 1 is not sufficient. The HL7
RIM, therefore, provides additional relationship classes

Participation, RoleLink and ActRelationship.
See Fig. 7.

Fig. 7: Relationship classes in HL7 RIM

2) Optimistic Concurrency Control
Since EHR applications are multi-user applications, conflicts

may occur if several users, edit the same EHR concurrently.
Optimistic concurrency control can be implemented by adding a

timestamp attribute to a common superclass of classes Entity,

Role, and Act. Due to the generic data model, the optimistic
concurrency control can be implemented generically in an EHR
application.

3) Traceability
For EHR applications, auditing requirements apply to allow

tracing all changes made to an EHR over time. Due to the
generic data model, a data historization concept can be
implemented generically in an EHR application. See Fig. 8.

Fig. 8: Historization concept

For the main EHR tables Entity, Role, and Act,

historization tables EntityHistory, RoleHistory, and

ActHistory are implemented. They contain the same

attributes plus, additionally, the attributes User, Time, and

Action. When a new row is inserted into the Entity table, a

new row is added to EntityHistory as well. It contains all

attribute values of the Entity row plus the additional
information of which user performed the create action at which

time. Whenever the Entity row is updated, a new entry is

made to the EntityHistory table. Again, the action (update)
and user and time are recorded. However, this time only the

modified attributes (e.g., Address) are being stored.

The entity history table allows querying all modifications to
individual EHRs.

V. IMPLEMENTATION

The concept as well as the extensions described in the last
section have been implemented as an EHR framework. C# was
chosen as the programming language, using the .NET Entity
Framework as well as MS SQL Server as the database. As a
proof of concept, an EHR application for melanoma treatment
has been implemented on top of this framework.

See Fig. 9 for a screenshot.

Fig. 9:Melanoma care EHR application

From a programmer’s point of view, all EHR data can be
accessed as C# objects. For example, creating an EHR record
programmatically is as follows.

var jasonKelly = new Person() { FirstName = "Jason", FamilyName = "Kelly" };
var cuh = new Organization() { Name = "Cork University Hospital" };
var consultant = new Consultant() { Person = jasonKelly, Hospital = cuh };
var person = new Person() { FirstName = "John", FamilyName = "Doe",
 DateOfBirth = new DateTime(1965, 1, 21) , Gender = Gender.MALE };
var patient = new Patient() { MRN = "4711", Person = person };
EntityDAO.createAll(new List<Entity>() { cuh, jasonKelly, person });
RoleDAO.createAll(new List<Role>() { consultant, patient });

Queries can be implemented conveniently using .NET
LINQ. Example:

public static List<Patient> findPatientsByMRN (String MRN)
{
 var result = Db.Roles.OfType<Patient>().Where(
 p => p.MRN == MRN
);
 return result.ToList();
}

VI. EVALUATION

We now evaluate the solution presented with respect to the
requirements specified in Section II.

1. General: The data model is, indeed, capable of handling
all kinds of EHRs that may occur in daily clinical
practice. This is due to the use of the HL7 RIM which

775774

itself can be (and has been) applied to clinical data of all
kinds.

2. Flexible: New entities and attributes may be added
easily by editing the schema spreadsheet. The code
generation ensures up-to-date classes. The ORM tool
ensures up-to-date database tables. Complex data
migrations during production can be avoided if
attributes are added only.

3. Efficient: Retrieval of EHR data via queries is efficient
since database columns can be indexed as in traditional,
static business information system data models.
Multiple join operations as in EAV implementations are
avoided. Potential space inefficiencies due to sparse
tables can be avoided by sparse column features
provided by relational database systems like, e.g., MS
SQL Server.

4. Convenient: Application programmers can
conveniently handle EHR data as objects in the object-
oriented programming language of choice.
Programming abstractions for creating and querying
EHR data (object / relational mapping) and state-of-the-
art development support like intelligent code
completion is supported.

5. Interoperable: Importing and exporting EHRs from
and to other medical applications is well supported since
our approach is based on HL7.

6. Cross-cutting concerns: Cross-cutting concerns like
auditing, traceability etc. can be supported generically
due to the generic data model. For example, the code for
generically identifying the modifications to an EHR
record comprises less than 50 lines of C# code.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an approach for managing
EHRs in a flexible yet efficient way. Advantages of static and
dynamic approaches are combined using a hybrid approach. It is
based on the HL7 RIM and comprises data model schema
editing using a spreadsheet, code generation, the use of state-of-
the-art ORM tools and database management tools. Due to the
genericity of the approach, cross-cutting concerns like
concurrency control and historization can be implemented
generically.

The approach has been implemented in form of an EHR
framework using MS .NET technology. As a proof of concept, a
subset of a commercial melanoma care EHR application has
been implemented prototypically. The proof of concept was
successful since all data modelling challenges of the commercial

application could be handled with the EHR framework. The
resulting data model is more compact (less than 70 attributes
compared to more than 100 attributes in the commercial
application), due to reduced redundancy. The application
exhibits good performance.

Therefore, the next step will be to migrate the commercial
EHR application to the new EHR framework.

REFERENCES

[1] Yamamoto K, Sumi E, Yamazaki T, Asai K, Yamori M, Teramukai S,
Bessho K, Yokode M, Fukushima M: A pragmatic method for electronic
medical record-based observational studies: developing an electronic
medical records retrieval system for clinical research. BMJ Open 2012,
2:e001622.

[2] Anhøj J: Generic Design of Web-Based Clinical Databases. Journal of
Medical Internet Research. 2003;5(no. 4):e27.

[3] IHTT: Transforming Health Care through Big Data Strategies for
leveraging big data in the health care industry.
http://ihealthtran.com/wordpress/2013/03/iht%C2%B2-releases-big-
data-research-report-download-today/. 2013 (accessed 2015)

[4] Bates DW, Saria S, Ohno-Machado L, Shah A, Escobar G: Big data in
health care: using analytics to identify and manage high-risk and high-
cost patients. Health Affairs 33.7 (2014): 1123-1131.

[5] Blumenthal D, Tavenner M: The “meaningful use” regulation for
electronic health records. New England Journal of Medicine 363.6
(2010): 501-504.

[6] Simsion G: Data Modelling – Theory and Practice, Technics
Publications, LLC, New Jersey, 2007.

[7] Fearn P, Sculli F: The CAISIS Research Data System. In Biomedical
Informatics for Cancer Research. Springer US; 2010:215-225.

[8] Fearn P, Regan K, Sculli F, Fajardo J, Smith B, Alli P: Lessons Learned
from Caisis: An Open Source, Web-Based System for Integrating Clinical
Practice and Research. Computer-Based Medical Systems, IEEE
Symposium on Los Alamitos, CA, USA: IEEE Computer Society; 2007,
633-638.

[9] Marenco L, Tosches N, Crasto C, Shepherd G, Miller PL, Nadkarni PM:
Achieving evolvable Web-database bioscience applications using the
EAV/CR framework: recent advances. J Am Med Inform Assoc 2003,
10:444-453.

[10] Beeler GW: HL7 Version 3—An object-oriented methodology for
collaborative standards development. International Journal of Medical
Informatics, Volume 48, Issues 1–3, February 1998, Pages 151–161.

[11] Huff SM, Berthelsen CL, Pryor TA, Dudley AS: Evaluation of a SQL
model of the help patient database. Proc Symp Comput Appl Med Care.
1991:386–90.

[12] Johnson S, Cimino J, Friedman C, Hripcsak G, Clayton P: Using metadata
to integrate medical knowledge in a clinical information system. Proc
Symp Comput Appl Med Care. 1990:340–4.

[13] Nadkarni PM, Brandt C, Frawley S, et al.: Managing attribute-value
clinical trials data using the ACT/DB client-server database system. J Am
Med Inform Assoc. 1998;5:139–51.

776775

