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Abstract—This paper presents an approach for managing 

electronic health record (EHR) data in a flexible yet efficient way. 
The data model is based on the HL7 Reference Information Model. 
If clinical requirements change, the data model can be extended 
by editing a schema spreadsheet. A code generator and the use of 
state-of-the-art ORM tools allow consistency between EHR 
application and database. Due to the genericity of the approach, 
cross-cutting concerns like concurrency control and auditing can 
be implemented widely.   
The approach has been implemented in form of an EHR 
framework. As a proof of concept, a subset of a commercial 
melanoma care EHR application has successfully been 
implemented.  
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I.  INTRODUCTION 

Medical information technology has recently advanced in 
many countries, and enormous amounts of clinical data are 
already stored as electronic health records (EHRs) [1]. At the 
same time, the domain of clinical information has evolved and 
expanded rapidly and continues to do so [2]. For example U.S. 
healthcare data in 2011 is reported to have reached, 150 
exabytes, while a Californian health network it is believed to 
have up to 44 petabytes of data from EHRs, including images 
and annotations [3],[4]. This leads to a dilemma. On the one 
hand side, efficient management (storage and retrieval) is 
necessary to deal with large amounts of EHR data. On the other 
hand, flexibility is needed to cope with the rapid evolution and 
expansion of EHR data schemas.  

While static approaches provide high efficiency, they lack 
flexibility. The advantages and disadvantages of dynamic 
approaches are complementary. In this paper, we present a 
hybrid approach that combines the advantages of static and 
dynamic approaches.  

                                                           
1 This work was funded by the European Commission, Horizon 2020 Marie Skłodowska-Curie 

Research and Innovation Staff Exchange, under grant no 644186. 

Regulations in various countries focus on the privacy / 
security aspects of EHRs in order to prevent potential abuses 
(e.g., [5]). However, those aspects are out of this paper’s scope.  

The remainder of this paper is structured as follows. 
Section II details requirements for managing EHRs. Section III 
reviews existing approaches. Sections IV and V detail our 
solution and describe an implementation. Section VI evaluates 
our approach. Section VII concludes this paper. 

II. REQUIREMENTS 

A solution for managing EHR we expect to meet the 
following requirements. 

1. General: The data model shall be capable of handling 
all kinds of EHR data that may occur in daily clinical 
practice, e.g. melanoma issues, breast cancer cases, etc. 

2. Flexible: New entities and attributes may be added 
easily over time without the necessity of complex data 
migrations during production. 

3. Efficient: Storage and retrieval of large amounts of 
EHRs is efficient in terms of access performance (read / 
write) as well as storage space.  

4. Convenient: Programming abstractions for creating and 
querying EHR data (object / relational mapping) and 
state-of-the-art development support like intelligent 
code completion shall be supported.  

5. Interoperable: importing and exporting EHRs from 
and to other medical applications shall be supported.  

6. Cross-cutting concerns: Cross-cutting concerns like 
auditing, traceability etc. shall be supported 

III. RELATED WORK 

A. Static Approaches 
 In traditional business information systems development, a 

static, bespoke data model is developed and implemented for a 
set of required use cases [6]. The development of static data 
models for EHR applications is common practice, too. For 
example, the data model of the open source EHR management 
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application Caisis ([7], [8], www.caisis.org) contains more than 
200 tables with more than 5,000 attributes (columns) in total. 
Tables are suited to most specific medical use cases, e.g. 

DxImageEndorectalUltrasound. The advantage of the 
approach is obvious: via database indexing, the performance of 
the EHR application can be optimized individually for each use 
case – thus, it is efficient. However, the static nature of the data 
model induces a high cost when it comes to new or modified use 
cases. Each new medical procedure in combination requires the 
extension of the data model and potentially the need to migrate 
data within running EHR applications. 

B. Entity Attribute Value Approach 
Because medical procedures advance constantly, researchers 

and practitioners have long tried to alleviate the disadvantages 
of static approaches by dynamic approaches. The entity attribute 
value (EAV) approach [9] has been applied in various life 
sciences applications, e.g., [2], [11], [12], and [13].  

In the EAV approach, data are conceptually stored in a single 
table with three columns: an Entity (the object being described), 
an Attribute (an aspect of the object being described), and the 
Value for that attribute. The advantage lies in the flexibility to 
add entities and attributes at runtime. The drawback of an EAV 
system is that the data’s physical organization is significantly 
different from the way users conceptualize it (as one column per 
attribute) [9]. Therefore, accessing EAV data (adding, querying) 
is inconvenient from a programmer’s point of view. Also, access 
performance may be poor since numerous join operations are 
required when retrieving whole sets of patient data.  

One can say that the EAV approach’s advantages and 
disadvantages are complementary to those of the static 
approach.  

 

C. OpenEHR 
openEHR is an open standard that specifies the management 

and storage, retrieval and exchange of health data in EHRs, with 

the aim of providing a powerful means of expressing health 

information so it can be understood and processed wherever 

there is a need, independently of a reference model. 

This is achieved through the use of an "archetype", which 

provides a place to formally define data definitions. Archetypes 

are collected into libraries, which are re-usable domain content 

definitions, which are created, reviewed and published by 

domain experts. Templates are used in openEHR used to 

logically represent patient specific data by referencing the 

correct data definitions from archetypes. This approach 

enforces standardization of medically defined terms over all 

layers that allows the reuse of semantically defined terms that 

are more universally understood. However, openEHR has 

limited adoption due to the modeling learning curve by 

clinicians. Ultimately, openEHR can be viewed as an EAV 

approach at the data level. 

 

D. HL7 Reference Information Model 
Health Level Seven (HL7, [10], www.hl7.org) is a set of 

standards for primarily concerned with transferring EHR data 

between software applications of healthcare providers. HL7 
defines a Reference Information Model (RIM), an ANSI 
approved standard which is described as “the cornerstone of the 
HL7 development process”. However, HL7 does not specify a 
concrete EHR data model or EHR application.  

IV. FLEXIBLE YET EFFICIENT MANAGEMENT OF EHRS 

In this section, we present a hybrid solution for managing 
EHRs which combines the advantages of static and dynamic 
approaches and thus is flexible yet efficient and addresses some 
of the limitations of related work. 

A. The Basis: HL7 Reference Information Model 
Our approach is based on the HL7 RIM. Fig. 1 shows the 

main base entity classes of the RIM as UML class diagram.  

 

Fig. 1: Main base entity classes of the HL7 RIM 

The core of the HL7 RIM is simple and generic in order to 
support all aspects of EHR. The main base entity classes are: 

� Entity may include persons as well as organizations. 

� Role allows specifying roles which persons and 

organizations may have in a clinical setting, e.g. patient 

or consultant. Role is separated from Entity to allow 
modelling that one person may have various roles. 

� Act comprises clinical documents, encounters, 

observations, procedures, etc., i.e., the main EHR data.  

For a concrete EHR data model, concrete classes may be 
defined as subclasses of the base entity classes. See Fig. 2  

 

Fig. 2: Classes for melanoma care EHR application 

 For example, we will use a real-world clinical case study in 
the field of melanoma treatment. Melanoma are a type of cancer 
that develops from the pigment-containing cells known as 
melanocytes and patients can present with multiple classes of 
melanoma lesions in a wide range of sites on the skin and other 
organs. The flexibility of the model is utilized by defining the 

classes MelanomaIssue (detail data for a melanoma lesion) 

and MDTTopic (topic to be discussed at a multidisciplinary 

team meeting) are defined as subclasses of Act. 

Using this data model, concrete patient data may be 
represented. See an example as UML object diagram in Fig. 3. 
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Fig. 3: Sample patient EHR data 

Patient John Doe with MRN 4711 has a malignant melanoma 
on his neck with TStage PT2A. The treating consultant is Jason 
Kelly of Cork University Hospital. This illustrates that this 
relatively simple model can be used to capture the essence of 
patient case. This approach can then easily be extended to a wide 
range of ad hoc clinical scenarios by the use of straight forward 
modelling via a spreadsheet tool, as shown in Section B below. 
Systems such as openEHR on the other hand require third party 
modelling tools and have a steeper learning curve. 

B. Data Model Configuration 
We support convenient modelling of concrete EHR classes 

and their attributes in a schema spreadsheet. See Fig. 4.  

 

 

Fig. 4: Schema spreadsheet for editing the EHR data model 

The schema spreadsheet contains columns for editing classes 
and their attributes including attribute name, datatype, and 

cardinality min/max. For example, the class Patient contains 

an attribute Anticoagulents of datatype Medication 
with cardinality 0..* (zero to many).  

C. Code Generation 
A code generator transforms the data model specified in the 

schema spreadsheet into an object-oriented programming 
language of choice. For example, if the EHR application is 

implemented in C#, the following source code for class Patient 
can be generated:  

 

public partial class Patient : Role 
{ 
    public virtual CNSIssue CNSIssue { get; set; } 
    public virtual Mobility Mobility { get; set; } 
    public virtual String MRN { get; set; } 
    public virtual ResidentialCare ResidentialCare { get; set; } 
    public virtual ICollection<Medication> Anticoagulents { get; set; } 
    public virtual ICollection<Medication>ImmuneSuppressionDrugs {get; set;} 
    public virtual String ImmuneSuppressionDrugsDetails { get; set; } 
    public virtual ICollection<Medication> NonAnticoagulents { get; set; } 
    public virtual String NonAnticoagulentsDetails { get; set; } 
    public virtual Person Person { get; set; } 
} 

 

D. Database Schema 
Using widely used  object/relational mapping (ORM) tools 

like, e.g., .NET Entity Framework, the generated classes can be 
mapped to tables of a relational database. ORM tools provide 
different strategies for mapping class inheritance hierarchies to 
tables: (a) table per hierarchy, (b) table per type, and (c) table 
per concrete class.  

Using strategy (a) table per hierarchy, the generated EHR 
classes are mapped to three database tables according to the HL7 

RIM base classes Entity, Role, and Act. See Fig. 5. 

 

 

Fig. 5: Database schema 

E. Sparsity 
When using strategy (a) table per hierarchy, the ORM tool 

generates a discriminator column to discriminate the various 
subclasses of the inheritance hierarchy. The table contains all 
attributes of all subclasses.  

One effect of this strategy is sparse tables since columns for 

attributes of different subclasses remain NULL. See Fig. 6.  

 

Fig. 6: Sparse database tables 

Columns like FirstName, FamilyName, and 

DateOfBirth are relevant for persons only and remain NULL 

for Organisations; and vice versa for Columns like Name.  
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For very large data sets, sparse tables could result in poor 
disk space efficiency. However, state-of-the-art databases like, 
e.g., MS SQL Server offer sparse column options that optimize 
space efficiency on the database level. 

F. Extensions 
1) m:n Relationships 
If m:n relationships between EHR classes are needed, the 

simple data model shown in Fig 1 is not sufficient. The HL7 
RIM, therefore, provides additional relationship classes 

Participation, RoleLink and ActRelationship. 
See Fig.  7. 

 

Fig. 7: Relationship classes in HL7 RIM 

 

2) Optimistic Concurrency Control 
Since EHR applications are multi-user applications, conflicts 

may occur if several users, edit the same EHR concurrently. 
Optimistic concurrency control can be implemented by adding a 

timestamp attribute to a common superclass of classes Entity, 

Role, and Act. Due to the generic data model, the optimistic 
concurrency control can be implemented generically in an EHR 
application. 

3) Traceability 
For EHR applications, auditing requirements apply to allow 

tracing all changes made to an EHR over time. Due to the 
generic data model, a data historization concept can be 
implemented generically in an EHR application. See Fig. 8. 

 

Fig. 8: Historization concept 

For the main EHR tables Entity, Role, and Act, 

historization tables EntityHistory, RoleHistory, and 

ActHistory are implemented. They contain the same 

attributes plus, additionally, the attributes User, Time, and 

Action. When a new row is inserted into the Entity table, a 

new row is added to EntityHistory as well. It contains all 

attribute values of the Entity row plus the additional 
information of which user performed the create action at which 

time. Whenever the Entity row is updated, a new entry is 

made to the EntityHistory table. Again, the action (update) 
and user and time are recorded. However, this time only the 

modified attributes (e.g., Address) are being stored.  

The entity history table allows querying all modifications to 
individual EHRs. 

V. IMPLEMENTATION 

The concept as well as the extensions described in the last 
section have been implemented as an EHR framework.  C# was 
chosen as the programming language, using the .NET Entity 
Framework as well as MS SQL Server as the database. As a 
proof of concept, an EHR application for melanoma treatment 
has been implemented on top of this framework.  

See Fig. 9 for a screenshot. 

 

Fig. 9:Melanoma care EHR application 

From a programmer’s point of view, all EHR data can be 
accessed as C# objects. For example, creating an EHR record 
programmatically is as follows. 

 

var jasonKelly = new Person() { FirstName = "Jason", FamilyName = "Kelly" }; 
var cuh = new Organization() { Name = "Cork University Hospital" }; 
var consultant = new Consultant() { Person = jasonKelly, Hospital = cuh }; 
var person = new Person() { FirstName = "John", FamilyName = "Doe", 
  DateOfBirth = new DateTime(1965, 1, 21) , Gender = Gender.MALE }; 
var patient = new Patient() { MRN = "4711", Person = person }; 
EntityDAO.createAll(new List<Entity>() { cuh, jasonKelly, person }); 
RoleDAO.createAll(new List<Role>() { consultant, patient }); 

 

Queries can be implemented conveniently using .NET 
LINQ. Example: 

 

public static List<Patient> findPatientsByMRN (String MRN) 
{ 
     var result = Db.Roles.OfType<Patient>().Where( 
         p => p.MRN == MRN 
         ); 
     return result.ToList(); 
} 

 

VI. EVALUATION 

We now evaluate the solution presented with respect to the 
requirements specified in Section II. 

1. General: The data model is, indeed, capable of handling 
all kinds of EHRs that may occur in daily clinical 
practice. This is due to the use of the HL7 RIM which 
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itself can be (and has been) applied to clinical data of all 
kinds. 

2. Flexible: New entities and attributes may be added 
easily by editing the schema spreadsheet. The code 
generation ensures up-to-date classes. The ORM tool 
ensures up-to-date database tables. Complex data 
migrations during production can be avoided if 
attributes are added only. 

3. Efficient: Retrieval of EHR data via queries is efficient 
since database columns can be indexed as in traditional, 
static business information system data models. 
Multiple join operations as in EAV implementations are 
avoided. Potential space inefficiencies due to sparse 
tables can be avoided by sparse column features 
provided by relational database systems like, e.g., MS 
SQL Server.  

4. Convenient: Application programmers can 
conveniently handle EHR data as objects in the object-
oriented programming language of choice. 
Programming abstractions for creating and querying 
EHR data (object / relational mapping) and state-of-the-
art development support like intelligent code 
completion is supported.  

5. Interoperable: Importing and exporting EHRs from 
and to other medical applications is well supported since 
our approach is based on HL7.  

6. Cross-cutting concerns: Cross-cutting concerns like 
auditing, traceability etc. can be supported generically 
due to the generic data model. For example, the code for 
generically identifying the modifications to an EHR 
record comprises less than 50 lines of C# code. 

VII. CONCLUSIONS AND FUTURE WORK  

In this paper, we have presented an approach for managing 
EHRs in a flexible yet efficient way. Advantages of static and 
dynamic approaches are combined using a hybrid approach. It is 
based on the HL7 RIM and comprises data model schema 
editing using a spreadsheet, code generation, the use of state-of-
the-art ORM tools and database management tools. Due to the 
genericity of the approach, cross-cutting concerns like 
concurrency control and historization can be implemented 
generically. 

The approach has been implemented in form of an EHR 
framework using MS .NET technology. As a proof of concept, a 
subset of a commercial melanoma care EHR application has 
been implemented prototypically. The proof of concept was 
successful since all data modelling challenges of the commercial 

application could be handled with the EHR framework. The 
resulting data model is more compact (less than 70 attributes 
compared to more than 100 attributes in the commercial 
application), due to reduced redundancy. The application 
exhibits good performance. 

Therefore, the next step will be to migrate the commercial 
EHR application to the new EHR framework. 
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