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Abstract—The cost of developing parallelised software is a
significant bottleneck in the implementation of bioinformatics
pipelines. This paper identifies the use of low-level threading
abstractions as one cause for these elevated costs, and proposes
alternatives which offer better value. We identify a core set
of higher abstractions to accomplish low-cost multi-core and
multi-server parallelization - Streams, Actors and the Scala
language (StAcS). We present the performance results of a
robust, parallelizable and scalable implementation of the Smith-
Waterman algorithm developed using the StAcS approach at
development costs inferior to equivalent systems written using
current standard techniques.

I. INTRODUCTION

The barriers to a wider and deeper use of our growing

reserves of genomic data are as much economic as technolog-

ical. Genomic data has become relatively cheap to create and

is getting cheaper and more abundant. Multi-core processors

are reducing processing speed limits for parallel software.

Price barriers to deploying software on large-scale grid and

distributed systems are lower thanks to cloud computing. But

while the software to take advantage of these trends must be

capable of extracting every last clock-cycle from multi-core

processors distributed over many nodes, such systems have

historically been expensive to develop, maintain and operate,

and will remain so unless bioinformatics practitioners adopt

new software architectures.

One important reason for the high cost of parallelization is

that implementations typically use low levels of abstraction as

exemplified by OpenMP and MPI. However such abstractions

are widely acknowledged as time-consuming and error prone -

two factors which increase development and maintenance costs

[1]. However, commercial software engineering, faced with the

same economic barriers, has begun to change its approach to

parallelization. High-level programming techniques developed

decades ago have been found to have enormous value in solv-

ing today’s problems. We describe a set of these techniques

in this paper, and demonstrate how they can be used in the

particular setting of Smith-Waterman sequence alignment to

achieve high levels of parallelization at low cost. The natural

implication is that bioinformatics practitioners should learn

from industry and adopt these technologies.

A. Lower versus Higher Abstractions

Software developers implement parallelization across mul-

tiple cores using multi-threaded code. Scientific software gen-

erally accomplishes this by means of low-level abstractions

exemplified by OpenMP. What these systems have in common

is the use of synchronization primitives to protect blocks of

shared data from concurrent access. The problem with this

approach is that it sharply increases the complexity and cost

of code [2], obfuscates the underlying algorithms [3] and

introduces an entire class of new problems like race conditions

and deadlock/livelock, which are expensive to find and fix. The

overuse of locks can furthermore end up serializing code that

might otherwise be run in parallel [4].

Triggered by the impending demise of Moore’s Law, re-

searchers have sought more productive alternatives to thread-

and-lock programming - language abstractions that can be

mapped more efficiently onto parallel hardware, and which

disentangle the logic of parallelization with the logic of the

algorithm under development [4]–[7].

In this paper we will present a set of abstractions that

can be employed to achieve multi-core and multi-server

parallelization at a low cost of development, maintenance

and deployment. Our goal is to demonstrate that despite the

widely-held concern that higher level abstractions can reduce

performance by removing opportunities for optimization, in

practice this does not have to be the case, especially in

so-called embarrassingly parallel contexts. On the contrary,

when implementing large-scale parallelization across cores and

servers, the kind of bottlenecks that arise (such as hardware-

based I/O limitations) are best dealt with at similarly high

levels of abstraction. As we will see in the next section,

StAcS not only accomplishes multi-threading but thanks to

the location-independence of actors it also acts as a suitable

abstraction for creating clusters of cooperating network nodes,

providing parallelization across multiple servers.
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B. Streams and Actors in Scala (StAcS)
So how do we avoid the drawbacks of low-level thread-

and-lock abstractions, and at the same time capitalize on the

promise of inter-sequence parallelization? For the purposes

of this research, we have selected what we consider to be

a core set of tools to accomplish low-cost, multi-core and

multi-server parallelization: Streams, Actors and the Scala

language. For brevity, we will refer to this combination as

StAcS. In this section we describe these three elements,

explaining how each one addresses the needs and concerns

of parallel systems conveyed in the previous section. We then

outline a proof-of-concept implementation of Smith-Waterman

which demonstrates that it is possible to create robust, parallel

and scalable systems using the StAcS approach with lower

costs than equivalent systems written using more traditional

techniques. Note that the same approach could be applied to

any alternative alignment algorithm that takes two sequences

and returns a score.
1) Scala: By coding in functional programming languages

(which transform immutable data rather than manipulate

shared mutable data), and using intuitive abstractions such

as Actors to achieve multi-threading and server-clustering,

it becomes easier - and therefore quicker and cheaper - to

develop robust parallel systems. Such systems are not prone to

the errors normally associated with multi-threading mentioned

above. Scala in particular offers some advantages over other

functional languages. Firstly, it runs on the JVM, which

automatically means a reduction in code complexity due to the

JVMs Memory Model. It also makes deployment costs cheaper

by running on any commodity hardware platform, allowing

owners a wider choice of platforms. Secondly, Scala is not

only a functional language, it also Object Oriented. This makes

it more accessible to programmers familiar with imperative

OO languages such as C++ and Java, reducing the costs of

adoption. Thirdly, Scala comes with a rich set of productivity

tools including highly sophisticated Integrated Development

Environments like Eclipse and IntelliJ.
2) Actors: As described by Karmina et al. [6], the actor

abstraction is a programming model that is inherently parallel.

The model is made up of actors and messages, where messages

are passed between actors asynchronously, and each actor

processes its message to completion in a single-threaded

fashion. Actor systems do not suffer from the obfuscation

effect of the thread-and-lock approach, but instead enable a

compositional design which simplifies reasoning. As Agha

et al. [8] have found, actor systems easily express a wide

range of computational paradigms, and provide a natural

extension of programming into concurrent (parallel) systems.

This naturalness and ease of expression means that programs

to solve complex problems do not add even more complexity

of their own. This direct relationship of the code to the problem

domain also makes it easier to optimize algorithms based on

knowledge of that domain.
3) Reactive Streams: The Achilles heel in actor-based

systems is the mailbox: Every actor receives messages into

its own mailbox and processes those messages when it is

allocated resources. This can lead to mailbox overflow if the

amount of data arriving into a system is greater than that

system’s capacity to process it. What is required is a simple

and intuitive pattern to buffer incoming messages and signal

data producers to wait before sending any more messages. This

signal is known as ’back-pressure’ and has been implemented

as part of networking protocols for decades. Generating back-

pressure is a low-level activity which, similarly to the thread-

and-lock pattern, will obfuscate code if implemented directly.

Reactive Streams [9] offer a way of implementing back-

pressure in a transparent way. They work well with actor

systems by avoiding the message buffer overflow problem in

a succinct and elegant way.

In addition to solving the message overflow problem, re-

active streams allow systems to become more robust and to

scale down as well as up. By transparently propagating ’back-

pressure’ from consumers to producers of data, they allow

systems to react gracefully and intelligently to limitations

in processing power (either temporary or systemic) without

failing.

4) Smith-Waterman using StAcS: With specific reference

to sequence alignment, parallelization efforts can be divided

into two kinds: intra-sequence and inter-sequence. The Smith-

Waterman alignment algorithm is used to compare large num-

bers of sequences, but only two at a time. Each such pairwise

comparison requires a matrix with one sequence as the row

index and the other sequence as the column index. Each value

in the matrix is calculated by finding the maximum of 4

possible integer values. The value in a given cell is based

on the previously calculated values in the 3 neighbouring

cells above and to the left. An intra-sequence approach to

parallelization would exploit the fact that it is theoretically

possible to calculate cell values in parallel along the minor

diagonal of the matrix. Inter-sequence parallelization, by con-

trast, makes use of the fact that no data dependencies exist

between individual alignments of any given pair and simply

seeks to run as many of them in parallel as available resources

will allow. The StAcS approach lends itself more naturally to

inter-sequence parallelization, but does not exclude the use of

intra-sequence optimizations, as will be explained below.

II. METHODS

The purpose of this paper is to demonstrate that using high

level abstractions to achieve parallelization is a functioning

alternative to the commonly used low-level abstractions de-

scribed above, and in fact is preferable due to its relatively

modest costs. In order to test that hypothesis we developed a

proof of concept using the Streams and Actors described in

the previous section, verified their efficacy, and measured the

related costs.

We verified the ability of the code to parallelize efficiently

across the 4 available cores of a single network node by

running a Smith-Waterman algorithm library without Actors

or Streams and measuring the speedup factor when the same

library was run on the same node using StAcS. We then

verified that parallelization across a cluster of nodes was
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Fig. 1. Actors on the Worker Node

linearly scalable by measuring the time to completion as more

nodes were added to that cluster. For practical reasons, rather

than maintaining a fixed number of database sequences and

expecting a reduced time to completion, we increased the

number of database sequences by 10,000 for every new node

and expected a constant time to completion.

Costs are difficult to measure directly, so we used the proxy

measurements of development time, lines of code and cloud

computation expenses to represent development, maintenance

and operational costs respectively.

A. Proof of Concept

What follows is a necessarily simplified description of the

proof of concept1.

The system runs across a number of network nodes, each ex-

ecuting the same ’worker’ program. One lightweight ’master’

node distributes tasks to the workers, and receives the results.

(All nodes participate in a cluster which is managed by the

same framework which implements both the actor model and

the reactive streams (Akka). The actors are unaware of their

physical location as they communicate with each other.) The

actors operating within a single worker are shown in figure 1.

With respect to figure 1:

• Every circle in this figure represents an actor instance and

the small arrows between actors represent the passing of

messages between them.

• The Alignment Worker at the bottom of the hierarchy

is where the pairwise alignment of the query sequence

with a single database sequence is done. The alignment

is handled by calling an external library which uses

SIMD techniques (and so benefits from intra-sequence

parallelization).

• The Query Batch Worker at the top of the hierarchy is

the point of entry to each worker node and is responsible

for splitting a number of incoming queries (a batch) into

individual queries to be processed in parallel.

1Our implementation made extensive use of the Akka framework which
provides both Actors and Reactive Streams through Scala.

• Every actor level in the hierarchy between the entry point

and the Alignment Worker breaks the work up further

into parallel tasks; first by database (a group of known

sequences) and then by individual database sequence.

• The speed at which this proliferation of parallel tasks is

performed is managed by two types of incoming reactive

streams: a stream of database names and a stream of

database contents.

• The Alignment Workers, which are doing the CPU-

intense task of performing the Smith-Waterman align-

ment, create the necessary ’back-pressure’ which is trans-

parently propagated back up the hierarchy, throttling the

rate at which new actors are created.

Note that there is a reverse hierarchy on the right, which

gathers in all results and performs local comparisons of the

scores, passing up only the highest score from each database,

and then each query. This allows for parallelization of the

comparison, and also dramatically reduces the number of

messages exiting the system. The master node receives only

the ’winning’ database sequence for each query.

The Smith-Waterman library we used was developed by

Zhao et al. [10] and is a single-threaded, highly-optimized

SIMD library available also to the JVM through a JNI2 library

provided by that team.

A useful image to employ in order to understand the inter-

play of Actors and Reactive Streams in this implementation

is that of a Formula 1 engine with intelligent fuel injection.

The Actors spin as quickly as the processor speed and core

numbers will allow. The Reactive Streams inject exactly the

right amount of data - not so little as to stall the engine, and

not so much as to flood it. This allows the engine to rev up

and down as processing resources (nodes) are added and taken

away.

III. RESULTS

A. Parallelization Over Multiple Cores

We measured the average time to completion over 10 runs

of the Smith-Waterman alignment as it looped through 10,000

database sequences which were read from a number of local

files, on a Linux server with an Intel i7 (quad-core) processor.

We then measured the average time to completion for the

StAcS implementation on the same machine, reading the same

number of sequences from the same files. The results are

shown in figure 2.

Our expectation is that on a quad-core processor, a multi-

threaded implementation should be four times faster than

single-threaded code. In fact the observed speedup using

StAcS was 4.87, slightly more than might be expected based

simply on the number of cores available. This demonstrates

that the use of high-level abstractions did not hinder the

expected speedup - quite the opposite. We believe the extra

speedup was due either to a more efficient I/O due to the

buffering inherent in Reactive Streams, or to the influence of

2Java Native Interface: a mechanism that allows code on the JVM to invoke
native code

577



Fig. 2. Single thread vs actors on single node.

Fig. 3. Linear scalability over multiple nodes on cloud.

the i7 processor’s hyper-threading technology, but this will

need to be investigated further. In any case, the results tell us

that the use of Actors and Streams on Scala do not present any

measurable overhead in their ability to provide parallelization,

despite their high levels of abstraction, and in fact may make

it easier to achieve some efficiency benefits. We discuss the

significance of these results below.

B. Parallelization Over Multiple Nodes

Using a commercial cloud computing service, we deployed

the worker agents described above on increasing numbers of

Linux nodes and for each new node we measured the time to

completion of a Smith-Waterman query over ten runs and took

the average. For practical reasons, rather than maintaining a

fixed number of database sequences and expecting a reduced

time to completion, we increased the number of database

sequences by 10,000 for every new node and expected a

constant time to completion. The results are shown in figure

3 3.

Allowing for some noise based on variable performance

from individual nodes, the results show a linear increase in

throughput for every extra node added. This perfect scalability

should be expected given the embarrassingly parallel nature

3The GCUPS unit is a common way of measuring performance for Smith-
Waterman and means Billion Cell Updates Per Second.

of the problem, and the StAcS approach has demonstrated its

ability to meet that expectation. As we will discuss below, it

meets these expectations while at the same time bringing some

important advantages of its own.

C. Costs

We used measurements of development time, lines of code

and cloud computing costs as proxy indicators of overall costs.

Development time: During the development of the proof-of-

concept presented here we recorded the time spent designing

and coding. We found that the development effort was 22.5

person days.

Lines of code: The proof of concept consisted in approxi-

mately 1000 lines of Scala code.

Computing cost: The cloud computing solution we used

charged $0.119 per node, per hour for the quad-core servers

we used to perform the multi-node scalability experiment on.

IV. CONCLUSION

A. Parallelization Over Multiple Cores

The central finding from the results of the multiple cores

experiment is that using higher abstractions to achieve multi-

threading does not impair the expected speedup. There is a

prevailing opinion that low-level programming is the only way

to achieve efficient parallelization, and this opinion inhibits

bioinformaticians from using alternatives which may be more

productive. Our results demonstrate that this prevailing opinion

is not sustained by the data. We submit that the advantages of

recent progress in commercial software development are not

being exploited enough in the bioinformatics community in

general. Opportunities to reduce the barriers of costs described

in the introduction are being lost.

B. Parallelization Over Multiple Nodes

Our purpose in showing these results is to demonstrate

that the higher abstraction of StAcS does not compromise

that expected scalability and instead simplifies it: The same

abstractions that allowed Smith-Waterman invocations to be

scaled across the cores of a single node, scaled also across

the nodes of a cluster. Rather than learning how to use both

OpenMP and MPI, bioinformaticians can distribute computa-

tions across local and remote processing cores using the same

high-level abstraction - the Actor.

C. Costs

1) Development: The figure of 22.5 person days is quite

moderate considering the robustness of the design and its

demonstrated performance and scalability. The effort corre-

sponds to less than three months work by a ’Weekend Warrior’

- somebody who uses only their free time on a project.

Allowing for the once-off research that was required as part of

the development, we would expect future developments using

StAcS to be even less costly. We believe that developers of

intermediate skill level would enjoy these levels of produc-

tivity, once they had familiarized themselves with the Actor

abstraction and the syntax of Scala.
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2) Maintenance : The ISO 9126 model of software quality

decomposes maintainability into 5 sub-characteristics:

• Analysability: how easy or difficult is it to diagnose the

system for deficiencies or to identify the parts that need

to be modified?

• Changeability: how easy or difficult is it to make adap-

tations to the system?

• Stability: how easy or difficult is it to keep the system in

a consistent state during modification?

• Testability: how easy or difficult is it to test the system

after modification?

• Maintainability conformance: how easy or difficult is it

for the system to comply with standards or conventions

regarding maintainability?

The proof of concept presented here has approximately 1000

lines of Scala code, and uses abstractions that express the

parallelization problem directly in a coherent and readable

way. The low line count and high readability are direct

consequences of choosing high-level abstractions like Actors

and Streams, as well as the Scala language itself which is

demonstrably less verbose than C++ [11]. These qualities have

a strongly positive effect on maintainability, impacting directly

on the analysability, changeability and testability characteris-

tics from the ISO model above.
3) Operation: Because the system runs on the JVM and

does not rely on specialized processors, a wider choice of

runtime platforms is available. This flexibility keeps the cost

of running the software low as one can ”shop around” for a

competitively priced platform provider. In our case we chose

a cloud provider which charged $0.119 per node, per hour

for a node with 4 CPU cores (virtual). Based on that price

and the established performance results, the cost on this same

platform for comparing a 3000 character sequence against

1 × 107 database sequences of the same length would be

$3.71. Extrapolating our experiment to a 2000 node cluster

- well within proven parameters of the Akka framework -

the proposed architecture would yield performance of around

1500 GCUPS. Note the fact that because of the demonstrated

linear scalability of the StAcS software, the cost per query
remains constant at less than $4 even if we scale up to

these supercomputer levels of speed (assuming the system was

constantly ’fed’ with query sequences).

To date, the Akka framework has been tested successfully

in clusters of 2400 nodes and its development team does not

believe this to be a hard limit. Assuming only quad-core pro-

cessors were available on each node, this configuration would

still effectively constitute a 10,000 core computation fabric,

and would provide supercomputer levels of performance as

for a price per query as indicated above.

D. Further Work

In this proof-of-concept implementation, the database se-

quences are maintained locally on each worker node, with

different nodes holding different sequences. The Reactive

Streams read database sequences from these local files. More

sophisticated approaches to storing and retrieving database

sequences might include using distributed file systems such

as HDFS4 or by employing distributed databases. Most im-

portantly, any such solution can be abstracted as a Reactive

Stream. We feel this topic deserves attention in a separate

study.

Although we present Actors as a high-level abstraction with
respect to Threads and Locks we recognize that in different

contexts, Actors may be considered low-level abstractions

on which ever more sophisticated constructs can be built.

An example of this would the be the Resiliant Distributed

Dataset (RDD) of the Apache Spark project which uses Scala

and Akka [12], and Akka Streams themselves which are

implemented in terms of Actors. While the purpose of this

paper was to advocate for the use of Actors over Threads,

further work to investigate these higher abstractions for their

applicability to bioinformatic problems would be beneficial.

E. Summary

Our motivation for this paper was our concern that high-

throughput software in the bioinformatics field was in dan-

ger of becoming an economic bottleneck due to high costs

of development, motivation and execution. We emphasised

high-level abstractions over low-level abstractions to achieve

the parallelization necessary in high-throughput systems. Our

viewpoint was informed by the general idea that bioinformatics

should learn from trends in the software industry rather than

adhering to older technologies [13].

As a demonstration of this approach, we developed an inter-

sequence alignment system based on Actors and Streams in the

Scala language and measured its cost directly. The result was

a powerful, low-cost Smith-Waterman aligner that can run on

commodity servers in the cloud and scale up to supercomputer

levels of performance at a low fixed cost per query.

Based on these outcomes we conclude the following:

• The StAcS architecture has clear cost advantages and

lower performance penalties compared to older technolo-

gies such as OpenMP and MPI and low-level thread-and-

lock programming. Given this, such architectures should

be considered by bioinformatic practitioners as a better

alternative to the traditional means of parallization.

• A parallel and massively scalable implementation of

the Smith-Waterman algorithm, which runs on cheap

commodity hardware in the cloud, was developed using

the StAcS architecture in a timescale corresponding to an

amateur hobbyist’s efforts. This bodes well for accelerat-

ing development by full-time bioinformaticians.

• Highly-scalable, high-throughput software for bioinfor-

matic applications can be build for lower costs than might

be expected if bioinformatic software practitioners adopt

the new technologies and architectures already in use in

commercial software development.

4Hadoop Distributed File System
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